

Plant Growth Requirements

Light

Temperature

Nutrition

Sediment / Water

Photosynthetic carbon source

US Army Corps of Engineers

Engineer Research and Development Center

Plant Growth Requirements: Light

Greater than 50% of full sunlight detrimental

☐ 33% or 50% neutral-density shade fabric

Clear water (no phytoplankton blooms)

Greater than 12:12 photoperiod advantageous

Difficult to provide adequate artificial light on large scale

Most economical and efficient production during spring, summer, and fall in outdoor facilities

US Army Corps of Engineers

Plant Growth Requirements: Temperature

Optimum for many species near 28C

- □ Range: 25-30C
- Protect from hard freeze in winter

US Army Corps of Engineers

Engineer Research and Development Center

Plant Growth Requirements: Nutrition

Sediment requirements

- □ Rooted SAV derives much of its N and most of its P from sediment
- □ P in water grows algae

The sediment should have a high fertility and an ability to retain P

fine-textured, mineral (not organic) sediment

US Army Corps

Plant Growth Requirements: Nutrition

Water requirements

- □ Rooted SAV derives much of its N and most of its P from sediment
- □ P in water grows algae

The sediment should have a high fertility and an ability to retain P

alum-treated water is clear and P-free

tap water must de-chlorinated

a 1-2 cm layer of aquarium gravel over the sediment can help reduce P release

US Army Corps of Engineers

Engineer Research and Development Center

Plant Growth Requirements: Nutrition

Water requirements (cont'd)

■ Many species of SAV have a high requirement for K in the water column

may need to occasionally monitor K concentration and add as needed

US Army Corps of Engineers

Plant Growth Requirements: Photosynthetic carbon source

Water requirements

- □ The concentration of free CO₂ in most freshwaters is low, particularly at pH levels above 8.3
- Many species of SAV utilize and benefit from bicarbonate
- Many species have a requirement for Ca in solution

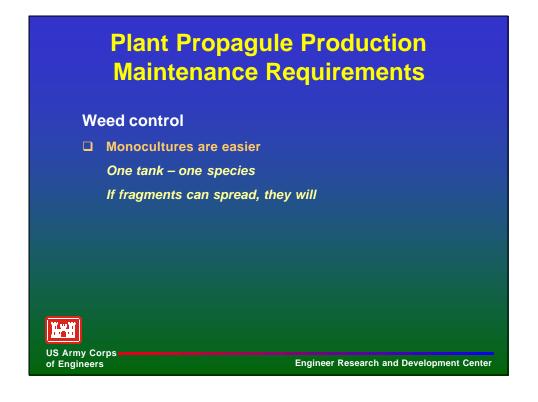
While aeration can help replenish ${\rm CO_2}$ taken up in photosynthesis, this does not eliminate the need for bicarbonate and ${\rm Ca.}\,$ pH should be monitored and alkalinity should be checked occasionally. If alkalinity declines, ${\rm Ca}\,$ may need to be added as well.

US Army Corps of Engineers

Engineer Research and Development Center

Plant Propagule Production Requirements: Containers

Must be easily transported


- ☐ Plastic nursery pots, 3 to 4" diameter
- ☐ Weakly-rooted species might benefit from peat liners
- ☐ Held in trays to prevent tipping

E-H

US Army Corps of Engineers

Plant Propagule Production Maintenance Requirements

Pest control

- Watch for insect damage and deal with it early
- □ Snails can be a problem occasionally
- ☐ Gambusia (mosquito fish)

US Army Corps of Engineers

Engineer Research and Development Center

Plant Propagule Production Maintenance Requirements

Algae control

□ Prevention is easier than controlWater exchange (with alum-treated water)Filtration (sand or DE filters)

US Army Corps of Engineers

Plant Propagule Production Maintenance Requirements

Water quality maintenance

□ Rapidly growing plants profoundly alter water chemistry

Partial water exchanges to maintain alkalinity, Ca, and K

Filtration if needed for turbidity

Aeration (air lifts) for mixing, gas exchange

Consider CO₂ augmentation for high production systems

US Army Corps of Engineers

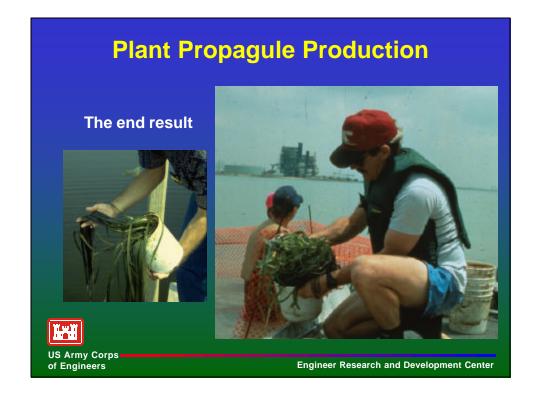
Engineer Research and Development Center

Plant Propagule Production Maintenance Requirements

Sediment nutrient depletion

□ Rapidly growing plants can quickly deplete sediment N

Fertilize sediments with NH₄ prior to planting


Add N to sediments as needed

Add N sparingly to water (<1 mg N/L) - use caution

US Army Corps

Applications and Limitations of Micropropagation for the Production of Underwater Grasses

M. Stephen Ailstock
C. Michael Norman
Kathleen J. Durham

Micropropagation – the manipulation of small quantities of axenic plant material ranging from simple cells to stem pieces under conditions favorable to the formation of new plants.

Related Terms - Tissue culture - Cell culture - Axenic culture

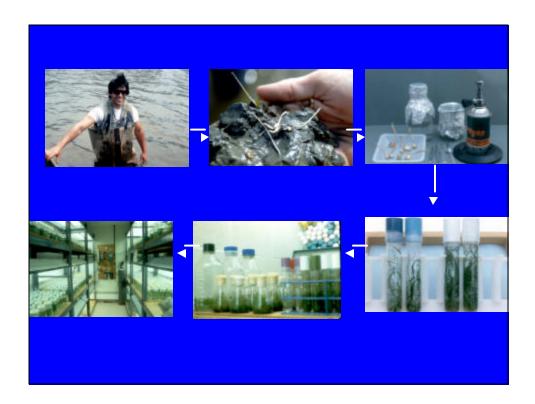
Examples of Agronomic Plants Propagated by Micropropagation

Boston Fern Rhododendron Strawberries

African Violets Mountain Laurel Potatoes

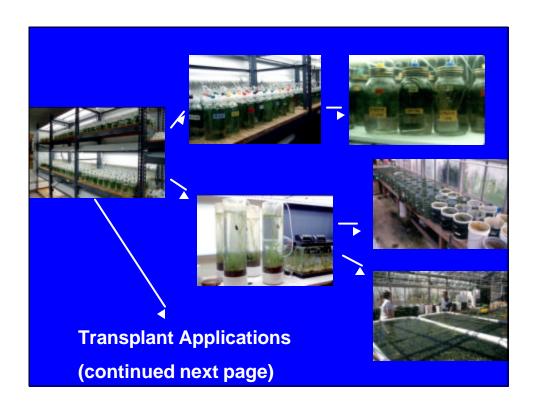
Tulips – Lilies Apples Perennial Corn

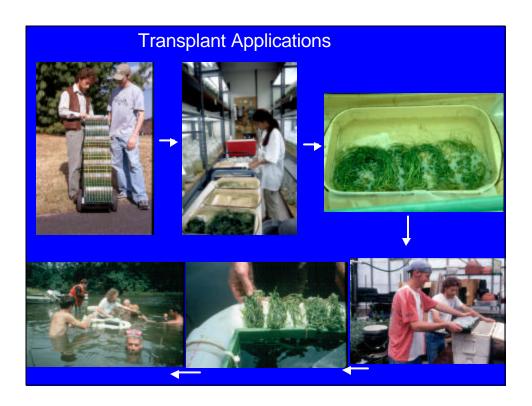
Advantages of Micropropagation


- 1) No seasonal constraints
- 2) Large numbers of plants produced
- 3) Inexpensive
- 4) Plants are axenic and disease free (specific techniques)
- 5) Plants are clones

Disadvantages of Micropropagation

- 1) Plants are clones
- 2) Some specialized training requirements
- 3) What to do with all the plants produced
- 4) Transitioning to field sites


Procedural Requirements for Developing a Micropropagation System


- Species Selection Desirable ecotypes Value Demand Applications
- 2) **Explant Choices** Sterile Semi-sterile Meristems
- 3) Disinfestation of Explants Bacteria Fungi Algae
- Development of Propagation Media Minerals Carbohydrates – Plant growth regulators
- 5) Media Refinement
- 6) **Development of Growth Media** Minerals
- 7) Development of a Transition Protocol Lab GreenhouseField

Application of Micropropagation to Submersed Aquatic Plants

- Physiological studies of plant growth and development
- Contaminant dose/response studies chemical ecology
- Bioassays of sediment and water
- Education/demonstration projects
- Plant production for field establishment

Costs for Basic Propagation Facility

1) Laboratory

•Autoclave \$6,000

•Laminar Flow Hood \$5,000

•Culture Room \$9,000

2) Propagation Cost/1000 Multi-stemmed Transplants

•Media \$ 22

•Culture Tubes \$ 48

•Labor <u>\$ 160</u>

\$ 230

3) Preparation for Field Establishment

•Containers \$ 30

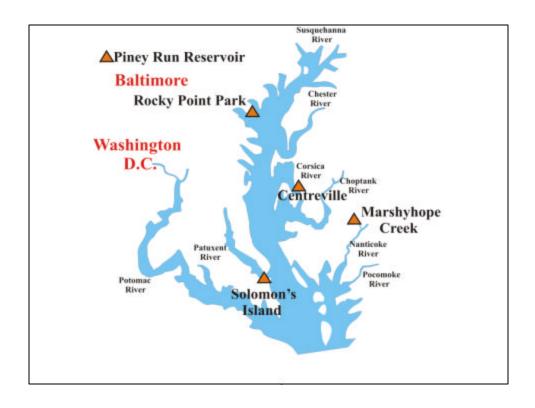
•Labor \$ 160

\$ 190


Total Production Costs \$ 420/1000 \$0.42/plant

Challenges for using Micropropagation for Production of Submersed Aquatic Plants

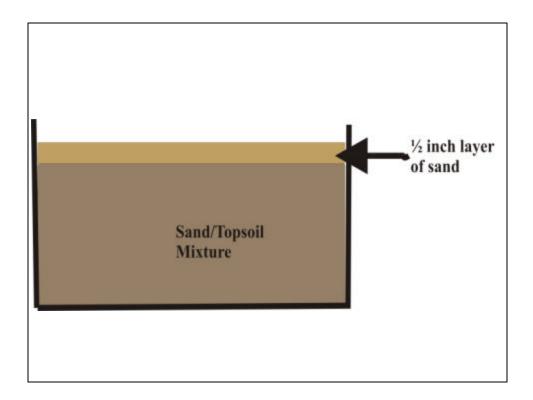
- Limited species Little success with seagrasses
- Sporadic demand for quantities of plants
- Short planning horizons for field applications
- •III-defined project objectives
- Significant gaps in basic plant physiology


This work was supported by the Maryland Port Administration with special thanks to Mr. Nathaniel Brown

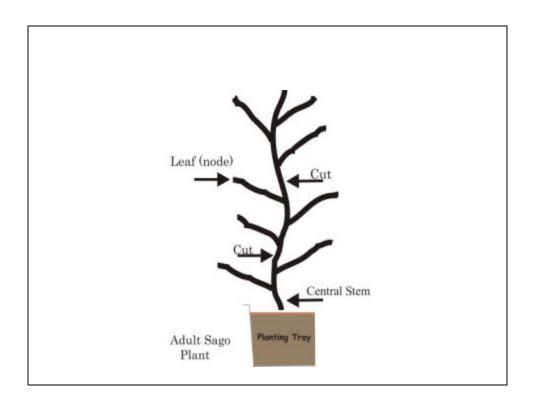
Bay Grasses in Classes

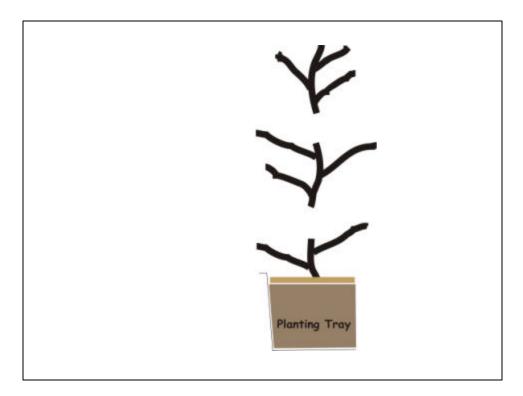
Bay Grasses in Classes Overview

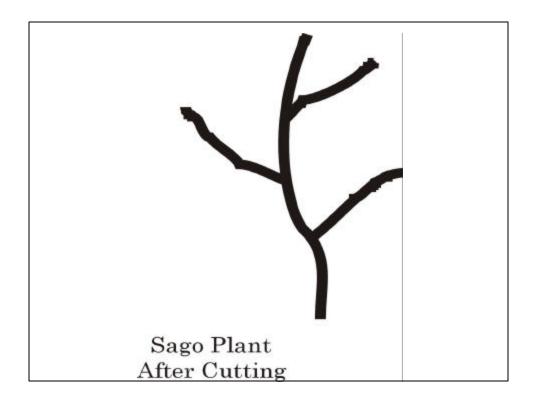
- Students learn the importance of SAV while growing different species in their classroom.
- Participate in restoration effort
- Create plant stock for restoration activities
 Since 1998-
 - ~ 28,000 students participated
 - ~ 2,300 m² of wild celery and sago pondweed planted at 8 sites

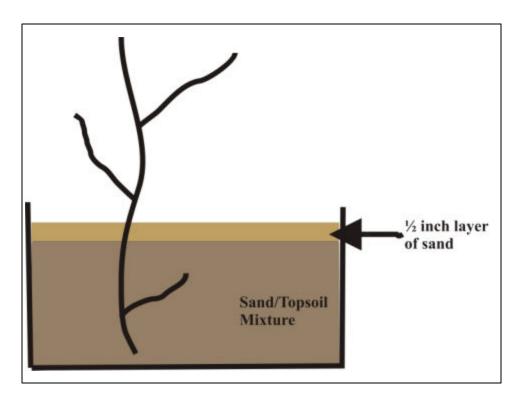

Materials: Total List for 2 growth chambers

- 2 growth chambers
- 2 sponge filters
- 2 powerheads
- 4 incandescent light bulbs (60 watt)
- 4 light shrouds (swing arm desk lamp)
- 2 power strips with surge protectors
- 2 ground fault interrupters (GFI)
- 2 thermometers
- 2 submersible aquarium heaters
- 1 pH test kit
 - 1 nitrate test kit
- 6 planting trays
- 1 foam sheet
- 1 bag of topsoil (40 pounds, <u>lower organic content than potting soil</u>)
- 1 bag sand









Bay Grasses in Classes

Tips for Micropropagation

- 84 degrees- lower temps grow too slow, but higher temps create algae problems
- Keep it short- as the plants get too long, they will brown and lose leaves
- Keep tanks about chest high
- Plants will keep in refrigerator after micropropagation for weeks

