

Research Goals To develop methods for land-based propagation of eelgrass Investigate eelgrass vegetative propagation under culture conditions Determine whether eelgrass seeds can be induced to germinate early and seedlings grown to size for outplanting

1 1 10 1	held at 14° C (SMC	70 0	1
Treatment	% Germination	% Seedling Survival	Days to Germination
14-16 ppt	43	20	7-13
Sterilized, 14-16 ppt	27	20	13-27
Scarified, 14-16 ppt	60	27	10-27
Hypoxic, 14-16 ppt	100	100	?-29*
0 ppt	93	50	3-27
5 ppt	87	47	3-27
10 ppt	33	20	10-27
15 ppt	40	13	10-28
20 ppt	7	0	28-29
25 ppt	7	0	27

Conclusions

- Eelgrass for restoration projects can be either propagated vegetatively or grown from seed in landbased culture systems
- Vegetative propagation does not require the collection of field material after the initial culture stock is established
- Use of seeds lowers culture costs as the system is in operation for approximately 6 months
- Low germination rates this year, possibly due to cooler temperatures and lower salinities

Cost-Effectiveness

- 1. Investment in culture facilities
 - a) Tanks, pumps and chillers (or heat pumps)
 - b) Lighting
- 2. Costs associated with running the system
 - a) Electrical costs
 - b) Maintaining pumps, chillers and lights
- 3. Culture costs
 - a) Collecting/processing vegetative shoots and/or seeds
 - b) Collecting sediments
 - c) Planting shoots and/or seeds in tanks
 - d) Cleaning tanks and plants
 - e) Harvesting plants and preparing for outplanting

'Strategy to Accelerate Protection and Restoration of SAV in Chesapeake Bay'

By Dec. 2008, plant at least 1000 acres at multiple sites!!

SEED COLLECTION LATE MAY – MID-JUNE 2001

6.6 million seeds in 204 collecting hours = 32,500 seeds/hour 2002

2.5 million seeds in 246 collecting hours = 10,000 seeds/hour 2003

5.2 million seeds in 310 collecting hours = 16,800 seeds/hour

Broadcast in August to October prior to seed germination in mid Nov.

METHOD	# Plants or Seeds/ PU	TIME* (min)		
ADULT PLANTS				
Woven Mats	15	30.0 PU ⁻¹		
Turf	~40	6.4 PU ⁻¹		
Cores	~15	5.7 PU ⁻¹		
Bundles	5-12	4.9 PU ⁻¹		
Single Shoots	1	0.4 PU ⁻¹		
SEEDS			*Includes:	
Burlap/Wire	550 m ⁻²	32.8 m ⁻²	Collection Preparation Planting	
Peat Pots	10 seeds	3.8 PU ⁻¹		
Seed Bags	10 seeds	3.3 PU ⁻¹		
Broadcast	12-50 m ⁻²	0.3 m ⁻²		

TIME PER SUCCESSFUL PLANTING UNIT AT 24 WEEKS* AVERAGED FOR BOTH SITES

• Machine 40.6 sec

• Manual 22.4 sec

• Seed 4.5 sec

* only includes time to plant

NOAA CICEET and NERRS Funded Research; Why Use Seeds? Less labor intensive to collect and distribute Less destructive to the donor site Increased genetic diversity at restored site Can be held for a period time before planting

Seed Planting Strategies

- Planting In vs. scattering On the sediment
- What is the optimal density for seeding?
- How will the sediment type effect seedling growth?

Potential Hurdles, Bioturbation

Damage to Seedling observed, June 2002

Present Research Efforts Funded by SeaGrant

- Investigating alternative suspension media to reduce or enhance sediment respiration. Adjusting the redox layer to optimize seed germination.
- Testing more heat tolerant seedlings propagated from seed stocks collected in Chesapeake Bay.
- Planting strategies to overwhelm seedling loss from grazing.
- Fall meeting of geneticists and plant propagators/breeders to consider the implications of interbreeding between Narragansett Bay and Chesapeake Bay populations.

Conclusions

- Planting seeds below the surface increases germination.
- Increasing seeding density had a negative effect on lateral shoot development.
- Increasing sediment organic content had a positive effect on lateral shoot development.
- All seeding densities came to a similar shoot density by the end of year 2, indicating a carrying capacity might be achieved.
- Gel-injection seeding looks promising but still in its infancy.

Buoy-Deployed Seeding: A New Approach to Restoring Seagrass Using Seed

Chris Pickerell, Stephen Schott, and Sandy Wyllie-Echeverria

> SAV Propagation Workshop Maritime Institute, Baltimore, MD September 3-4, 2003

Peconic Estuary, Long Island, New York

- Average salinity: ~27ppt
- Mean tidal range: 0.75m
- Depth range for eelgrass (Zostera marina): 1-5m
- Existing eelgrass: 1551
- Historic eelgrass: ~6240 acres
- **~75% lost since 1930**

Eelgrass Restoration Efforts to Date

- Work began in 1996-1997 using the staple method (Fonseca, et al., 1982) and harvested adult shoots.
- TERFS (Burdick & Short, 2002) was adopted in 2000 utilizing floating and beach-cast shoots.
- Broadcast seeding (Orth, personal communication) began in 2001 after visiting VIMS.
- Development of the Buoy Deployed Seeding System (BuDSS) began soon after broadcast seeding (2001).

Our Goal

To design a planting method that closely mimics the natural ability of floating and rafting reproductive shoots of *Zostera* to disperse seeds long distances from a donor meadow. In so doing we would eliminate the need for flower storage and handling and the labor associated with it as well as provide a greater opportunity for the public to get involved with the process of seagrass restoration.

Basic Requirements

- Some means of holding reproductive shoots.
- Floatation to hold the shoots near the surface of the water to maximize spread.
- Anchor and line to hold the shoots over a defined area.

Design Considerations

- Reliable
- Inexpensive
- Easy to construct and deploy.
- Sturdy enough to be reused over multiple seasons.
- Adaptable to different planting densities, depths and energy environments.
- Use off-the-shelf components.

2002 BuDSS Deployment Locations

- Red Cedar Bluff: sandy, open bay
- Southold Bay: sandy, open bay
- Jessups Cove: muddy, shallow cove
- Sag Harbor Upper Cove: muddy, cove
- Sag Harbor Causeway: sand/mud, cove

Sag Harbor Causeway Restoration Site

- This site supported eelgrass as recently as 1994.
- Broadcast seeding "successful" in 2001.
- Depth: 1.3m
- Tidal Range: 0.75m
- Sediment Type: 0% gravel/96% sand/4% clay with 6% Organic Matter

Sag Harbor Causeway Restoration Site Deployment Our goal was to plant 2 - 0.10acre (0.04 hectare) plots at density of 200 seeds/m². Each buoy are covered 29m² and was stocked with flowers that were expected to yield 5,800 seeds. 15 buoys were set in a 3x5 grid with 15ft OC spacing. Collected and deployed flowers on June 26, 2002. Conducted side-by-side broadcast seeding in September.

Results

- Seedling distribution closely corresponded to the arc of each buoy indicating minimal transport following release.
- Counts within plots (June) indicated at least 4% recruitment from predicted* seed fall.
- A mean of 2.8 laterals per genet were observed for all plots (BuDSS and Broadcast).
- There was a consistent, but different seedling distribution signature for the BuDSS and broadcast plots.

*Predicted seed fall was less than actual in subsequent tests.

Lessons Learned

1. Seedling recruitment below each buoy was predictable, but not as evenly distributed as desired.

Lessons Learned

2. It would be possible to plant a larger area with the same number of buoys with a greater OC spacing between buoys.

Lessons Learned

3. Our seed(ling) yield was not as high a expected based on preliminary counts of Stage IV seeds (DeCock, 1980) in spathes.

Seed Release Estimates (How many and when?) Weekly counts from nets (Noyack Cr.) Data from the literature (Virginia; Harwell and Orth 2002.) Daily counts from nets (Mulford Pt.) Data not presented.

Costs

- Seed Collection (20 diver hrs./acre)
 - A well trained diver at a productive site can collect ~300 reproductive shoots/hour; enough to stock 3 nets. A 15 buoy deployment (0.25 acre at the wider OC spacing) would require 5 diver hours.
- Materials (\$400/acre)
 - Each buoy/net/anchor combination costs \$6.50.
 - Total materials cost for a 0.25 acre planting would be ~ \$100.
- Deployment (\$0-?)
 - Depending on the location of the planting site relative to collection site and whether a boat is used during seed collection, there may be no additional cost associated with deployment.
- Monitoring
 - Monitoring costs vary considerably with need. Cost would involve dive time, boat and/or travel time.

Advantages and Disadvantages

- ADVANTAGES:
 - Practical:
 - Minimal handling of flowers and seeds required
 - No need for storage and handling facility and the energy and labor necessary to maintain it
 - Visible to the public
 - Theoretical:
 - Mimic's natural phenological schedule
 - May reduce predation by staggering seed dispersal over time
 - May yield a more even distribution of seeds given the combination of time and natural forces at work

- DISADVANTAGES:
 - Practical
 - Visible to the public (could be an attractive nuisance)
 - Navigation issues
 - Theoretical
 - Mimic's natural phenological schedule (seed predators still active)
 - May allow more time for predation, export, or over burial

What's Next?

- Further refine method to improve seedling distribution and buoy spacing.
- Develop a modified version for high-energy and deeper water environments.
- Test with additional species.

Acknowledgements

- New York State Department of State, Long Island Community Foundation and The National Fish and Wildlife Foundation for funding this ongoing work.
- The Peconic Estuary Program
- The Towns of Southold and Southampton
- Bob Orth. VIMS
- Steve Granger, URI
- Jerry Churchill, Adelphi University
- Jon Semlear, Bayman and Southampton Town Trustee
- Mallory Delany for preparation of the Power Point presentation.
- Kim Petersen, Matt Parsons, and Mallory Delany for their assistance in the field.

References

- Burdick, C. and F. Short, 2002. A New Seagrass Restoration Method: TERFS. UNH pamphlet, by, sponsored by NOAA Restoration Center, University of New Hampshire, Durham
- Churchill, A. C., and M. I. Riner. 1978. Anthesis and seed production in *Zostera marina* L. from Great South Bay, New York, U.S.A. Aquat. Bot. 4: 83-93.
- De Cock, A. W. A. M. 1980. Flowering, pollination and fruiting in *Zostera marina* L. under controlled conditions in comparison to the development in two different natural habitats in the Netherlands. Aquatic Botany **10**:99-113.
- Fonesca, M.S., W.J. Kenworthy and G.W. Thayer. 1982. A low cost planting technique for eelgrass (*Zostera marina L.*). U.S. Army Engineer Costal Engineering Research Center, Ft. Belvoir, Virginia, Costal Engineering Technical Aid no. 82-6. 15p.

References

- Granger, S., M. Traber, S.W. Nixon, and R. Keyes. 2002. A practical guide for the use of seeds in eelgrass (Zostera marina L.) restoration. Part 1.
 Collection, processing and storage. M. Schwartz (ed.), Rhode Island Sea Grand, Narragansett, R.I. 20 pp.
- Harwell, M.C. and R.J. Orth, 2002. Long-distance dispersal potential in marine macrophyte. Ecology, 83(12): 3319-3330.
- Orth, R.J., M. Luckenbach, and K.A. Moore. 1994. Seed dispersal in a marine macrophyte: implications for colonization and restoration. Ecology **75**:1927-1939.

Reproductive Potential of Natural Populations of *Ruppia maritima* and *Potamogeton* perfoliatus by Seed in the Mid-Chesapeake Bay

M. Stephen Ailstock Kelly W. Caffey Jay Kunkle Andrew E. Watts

Christopher L. Wharton

Reproductive Potential	Potamogeton perfoliatus	Ruppia maritima
1) Plants/unit area	Highly variable	Highly variable
2) Stems/plant	Highly variable	Highly variable
3) Inflorescences/ stem		
4) Flowers/ inflorescence		
5) Carpels/flower		
6) Ovules/carpel		
Seeds/		
inflorescence		
Seeds/stem		

Reproductive Potential	Potamogeton perfoliatus	Ruppia maritima
1) Plants/unit area	Highly variable	Highly variable
2) Stems/plant	Highly variable	Highly variable
3) Inflorescences/ stem	2.4	2.6
4) Flowers/ Inflorescence	5-12 (9)	2
5) Carpels/flower	4	4
6) Ovules/carpel	1	1
Seeds/ inflorescence	20-48	8
Seeds/stem	48-115	20.8

Redhead -	Location	Fastern Bay

*Average ra	anges of three	e, 1/4lb. Samples			
Date:	Immature Inflorescence	Mature Inflorescence	Inflorescence with Immature Seed	Inflorescence with Mature Seed	Potential Seeds per lb. (Inflorescences x36x4)
07/29/03	10-48	18-54	3-28	32-81	9072-30384
08/07/03	20-40	30-40	14-19	60-93	17856-27648
08/14/03	5-8	7-15	5-15	42-130	8496-24192
^Averages	of three, 1/4II	o. Samples			
Date:	Immature Inflorescence	Mature Inflorescence	Inflorescence with Immature Seed	Inflorescence with Mature Seed	Potential Seeds per lb. (Inflorescences x36x4)
07/29/03	25	32	12	52	17424
08/07/03	31	35	16	72	22176
08/14/03	7	10	10	77	14976
**Counts pe	er 25 individu	al stems			
Date:	Immature Inflorescence	Mature Inflorescence	Inflorescence with Immature Seed	Inflorescence with Mature Seed	Seeds/stem (Inflorescences x36/25)
07/29/03	17	20	6	19	89
08/07/03	18	15	2	39	107
08/14/03	8	4	1	31	63

Ruppia – Location Taylor's Island								
*Bongoo of	three. 1/4lb. Sa	amulao.						
Date:	Immature Inflorescence	Potential Seed Production	Mature Inflorescence	Potential Seed Production	Immature Seed	Mature Seed	Total Potential Seeds for one, 1/4lb.	Potential Seeds per lb (Seedsx4)
07/28/03	0-6	0-48	0-2	0-16	460-669	78-100	538-833	2152-3332
08/01/03	7-11	56-88	1-5	8-40	291-619	84-138	439-885	1756-3540
08/05/03	3-7	24-56	1-2	8-16	134-234	49-65	215-371	860-1484
08/20/03	0	0-64	0	0	0-9	14-17	14-90	56-360
Average	s of three, 1/4I	Potential Seed	Mature	Potential Seed	Immature	Mature	Total Potential Seeds for	Potential Seeds per II
Date:	Inflorescence	Production	Inflorescence	Production	Seed	Seed	one, 1/4lb.	(Seedsx4)
07/28/03	3.66	29.28	1.33	10.64	535.33	86.66	661.91	2647.64
08/01/03	8.66	34.64	2.66	21.28	405.66	107.66	569.24	2276.96
08/05/03	5.33	42.64	1.66	13.28	188.33	54.33	298.58	1194.32
08/20/03	0	0	0	0	5.66	15	20.66	82.64
**Counts pe	er 25 individual	stems						
Date:	Immature Inflorescence	Potential Seed Production	Mature Inflorescence	Potential Seed Production	Inflorescence with immature Seed	Inflorescence with Mature Seed	Total Potential Seeds for 25 stems	Potential Seeds/stem (Inflor. x8/25
07/28/03	2	16	1	8	48	11	496	19.8
08/01/03	5	40	1	8	57	15	624	24.9
08/05/03	4	32	2	16	57	14	616	24.6

Factors Affecting Reproductive Potential

- 1) Plant vigor Photosynthesis Ambient environment
- 2) Plant growth Physical damage Bioturbation
- 3) Flowering Plant vigor Plant growth Stage of growth
- 4) Floral abortions Miscarriages
- 5) Seed set Pollination Plant density Habitat stability
- **6) Seed maturation** Plant vigor Plant growth Habitat stability
- 7) Seed dispersal Water currents Waterfowl
- 8) Overwintering success Habitat stability Bioturbation

Effects of Waterfowl Classes on Factors Affecting Reproductive Potential

Factor	Resident Waterfow	Migrating Waterfow
1) Plant vigor	Direct continuous	Indirect sporatic (overwintering structures)
2) Plant growth	Direct continuous	None - Favorable (Apicial dominance)
3) Flowering	Direct continuous	None
4) Floral abortion	N.A.	N.A.
5) Seed set	N.A.	N.A.
6) Seed maturation	Direct continuous	None
7) Seed dispersal	None	Significant
8) Overwintering success	?	?

Effects of Mute Swans on the Reproductive Potential of *Potamogeton perfoliatus* and *Ruppia maritima* (30 days)

R. maritima

1,550 seeds/lb x 2.2 lb/kg x *3.8 kg/day/swan x 30 days = 388,740 potential seeds/swan

P. perfoliatus

18,192 seeds/lb x 2.2 lb/kg x *3.8kg/day/swan x30 days = 4,562,553/seeds/swan

*Willey and Halla 1972

This work was supported by the
U.S. Army Engineer Research and
Development Center, Vicksburg, MS
with special thanks to Deborah
Shafer and Mark Mendelsohn, ACOE