AQUATIC DISPOSAL FIELD INVESTIGATIONS
COLUMBIA RIVER DISPOSAL SITE, OREGON

APPENDIX C: THE EFFECTS OF DREDGED MATERIAL
DISPOSAL ON BENTHIC ASSEMBLAGES

by

Michael D. Richardson, Andrew G. Carey, Jr., William A. Colgate
School of Oceanography
Oregon State University
Corvallis, Oregon 97331

December 1977
Final Report

Approved For Public Release; Distribution Unlimited
APPENDIX A: Investigation of the Hydraulic Regime and Physical Nature of Bottom Sedimentation
APPENDIX B: Water Column, Primary Productivity, and Sediment Studies
APPENDIX C: The Effects of Dredged Material Disposal on Benthic Assemblages
APPENDIX D: Zooplankton and Ichthyoplankton Studies
APPENDIX E: Demersal Fish and Decapod Shellfish Studies
SUBJECT: Transmittal of Technical Report D-77-30 (Appendix C)

TO: All Report Recipients

1. The technical report transmitted herewith represents the results of one of several research efforts (Work Units) undertaken as part of Task 1A, Aquatic Disposal Field Investigations (ADFI), of the Corps of Engineers' Dredged Material Research Program (DMRP). Task 1A is a part of the Environmental Impacts and Criteria Development Project (EICDP), which has a general objective of determining the magnitude and extent of effects of disposal sites on organisms and the quality of surrounding water, and the rate, diversity, and extent such sites are recolonized by benthic flora and fauna. The study reported on herein was an integral part of a series of research contracts jointly developed to achieve the EICDP general objective at the Mouth of the Columbia River Disposal Site, one of five sites located in several geographical regions of the United States. Consequently, this report presents results and interpretations of but one of several closely interrelated efforts and should be used only in conjunction with and consideration of the other related reports for this site.

2. This report, Appendix C: The Effects of Dredged Material Disposal on Benthic Assemblages, is one of five contractor-prepared appendices published relative to the Waterways Experiment Station Technical Report D-77-30 entitled: Aquatic Disposal Field Investigations, Columbia River Disposal Site, Oregon. The titles of all appendices of this series are listed on the inside front cover of this report. The main report will provide additional results, interpretations, and conclusions not found in the individual appendices and provide a comprehensive summary and synthesis overview of the entire project.

3. The initial purpose of this study, conducted as Work Unit 1A07C, was to collect baseline information on the benthic community structure of the nearshore zone in the vicinity of the mouth of the Columbia River and to examine the spatial and temporal changes in this community with particular emphasis on historical disposal areas. The final phase of this study was directed toward definition of the effects of dredged
material disposal on the benthic communities. The rate and pattern of recolonization, as well as the factors affecting recolonization, were also determined.

4. A conclusion of this report, based on the data presented, was that areas exposed to direct disposal of dredged material had higher diversity and evenness values and lower density of macrobenthos than unaffected areas. It can also be concluded from this study that there was a significant reduction in the abundance of 11 of the 33 most abundant species at the areas exposed to direct disposal. Recolonization of benthos into the affected area was probably accomplished by organisms burrowing up through the dredged material, by migration into the area, and, to a lesser extent, by reproduction and recruitment from other areas.

5. The results of this study are particularly important in determining the timing and placement of dredged material for open-water disposal. Referenced studies, as well as others summarized in this report, will aid in determining the optimum disposal conditions and site selection for either the dispersion of the material from the dump site or for its retention within the confines of the site, whichever is preferred for maximum environmental protection.
The objectives of this study were to identify and determine the significance of physical, chemical, and biological factors that govern the rate at which open-water dredged material disposal sites are colonized by benthic assemblages.

In the macrobenthic areal baseline, 5 assemblages and 13 species...
groups were found. The distribution, community structure, and seasonal constancy of these assemblages were related to the distribution of sediments and organic matter, the stability of sediments, and changes in sediment characteristics due to the deposition of fine-grained material from the Columbia River.

The deposition of dredged material significantly increased diversity and evenness values and reduced the density of macrofauna. Of the 33 most abundant species, 11 species had significantly lower abundances at stations exposed to direct dredged material deposition.

The effects of dredged material disposal on benthos were probably related to direct burial of benthos and changes in sediment characteristics and not increased turbidity from the disposal operation or introduction of pollutants or organic matter. Repopulation of benthos into the affected area was probably accomplished primarily by benthos burrowing up through the dredged material or benthos migrating into the area and, to a lesser extent, reproduction and recruitment of benthos from outside the area. There was very little evidence for transportation of benthos to the experimental disposal site via dredged material.
DISCLAIMER

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.
SUMMARY

The objectives of the Mouth of the Columbia River (MCR) study were to identify and determine the significance of physical, chemical, and biological factors that govern the rate at which open-water dredged material disposal sites are colonized by benthic communities.

The study of benthic assemblages at the MCR site was divided into two phases. Phase I (Contract DACW57-75-C-0137) included collection of baseline information on benthic assemblages, gear evaluation, and planning for the controlled disposal experiment. Phase II (Contract DACW57-76-C-0092) included the controlled disposal experiment and continued collection of seasonal baseline information.

A total of 2,190 samples were obtained from the MCR study site, including 73 metered beam trawls for megafauna, 1,657 0.1-m² Smith-McIntyre grabs for macrofauna, 76 samples for meiofauna, five box cores for macrofauna, 369 samples for sediment, and 10 miscellaneous samples. This report includes the results from 1,359 0.1-m² Smith-McIntyre grabs for macrofauna (>1.00 mm) and 67 metered beam trawls for megafauna. A total of 339,753 individuals (425 species) were sorted and identified from the Smith-McIntyre grab samples, and 258,501 individuals (141 species) were sorted and identified from the beam trawl samples.

The location of stations for the areal baseline was determined from a pilot survey (1-2 October 1974) and from data on the distribution of sediments provided by the University of Washington. The analysis of within station and between station variability indicated that five replicate 0.1-m² Smith-McIntyre grab samples per station were adequate to calculate community structure values and classify benthic assemblages and species groups.

The distribution of assemblages and species groups and the values of community structure parameters for the MCR study region were determined from an areal baseline of 100 stations collected in 4-9 December 1974 and 19-25 January 1975. From the results of the areal baseline, 22 station locations were chosen to determine seasonal changes in benthic com-
munities. These stations were sampled on 18-23 April 1975, 23-27 June 1975, 11-16 September 1975, and 3-10 January 1976.

The distribution and community structure of the 5 assemblages and 12 station groups found in the areal baseline as well as the distribution of the 13 species groups are described in the text. The seasonal changes in benthic communities are also described.

Except for Assemblage C (the southern inshore sand assemblage), the species composition, biomass, and density of benthic assemblages off the mouth of the Columbia River were different than values calculated from other benthic assemblages reported from the Oregon-Washington continental shelf. The influence of the Columbia River (sedimentation patterns and high primary productivity) probably accounts for the difference.

The distribution, community structure, and seasonal constancy of benthic assemblages found off the mouth of the Columbia River were interpreted in part to be the result of the same factors that influenced benthic assemblages along the Oregon-Washington coast. These factors included an increase in silt, clay, and organic content in sediments offshore and a decrease in sediment instability due to sediment stirring by winter storms offshore. Superimposed on this depth gradient were the effects of the deposition of fine-grained sediments from the Columbia River and the high primary productivity of the area.

Diversity and species richness values were related to sediment stability. In general, the values of diversity and species richness increased offshore probably as the result of the increased sediment stability due to reduced sediment stirring by winter storms. The high abundance of tube-dwelling polychaetes at deeper stations also increased sediment stability. The lowest values of diversity and species richness were calculated for stations that had considerable seasonal changes in sediment characteristics as a result of the deposition of fine-grained sediments at high flow of the Columbia River.

Biomass and density of macrofauna were related to the organic content of sediments. The biomass and density of macrofauna and the percentage organic content of sediments generally increased offshore. The highest
values of density and biomass were found at areas of high silt deposition because of the high organic content of those sediments.

The seasonal constancy of species composition was highest in areas that had the highest seasonal constancy of sediment characteristics. Benthic assemblages exposed to deposition of fine-grained material by the Columbia River had the highest Czekanowski dissimilarity values (low constancy) between seasons of any stations in the study area. The seasonal constancy of the abundance of dominant species was related to sediment stability. The between-season Bray-Curtis dissimilarity values decreased (higher constancy) with increasing sediment stability offshore (reduced stirring of sediments by storms) and were highest at stations that had the lowest seasonal stability because of deposition by the Columbia River.

From 9 July 1975 to 26 August 1975 approximately $4.6 \times 10^5 \text{ m}^3$ of sand was dredged from the mouth of the Columbia River and deposited at experimental site G ($46^\circ 06' \text{N}, 124^\circ 11.5' \text{W}$). The experimental site region was sampled three times prior to disposal (4-9 December 1974, 18-23 April 1975, 23-27 June 1975) and five times after disposal (11-16 September 1975, 20-25 October 1975, 3-10 January 1976, 19-20 April 1976, 7-8 June 1976).

The station groups calculated from intrinsic species abundance values were similar to station groups derived from the extrinsic parameters that define the extent and magnitude of the dredged material disposal. The extrinsic data included U.S. Army Corps of Engineers records on the disposal operations, observations of predisposal and postdisposal bathymetry, and textural analysis of predisposal and postdisposal sediments.

The stations exposed to direct disposal of dredged material had significantly higher diversity and evenness values and significantly lower density of macrofauna when compared to unaffected stations. The significant differences in diversity and evenness persisted for at least eight months after disposal and the significant difference in density of macrofauna persisted for the duration of the sampling program (10 months after disposal). There was also a significant reduction in the
abundance of 11 of the 33 most abundant species at stations exposed to dredged material disposal when compared to unaffected stations.

The effects of dredged material disposal on benthos was probably related to direct burial of benthos and changes in sediment characteristics and not increased turbidity from disposal operations or introduction of pollutants or organic matter.

Repopulation of benthos into the affected area was probably accomplished primarily by benthos burrowing up through the dredged material or migrating into the area and, to a lesser extent, by reproduction and recruitment of benthos from outside the affected area. There was very little evidence for transportation of benthos to the experimental disposal site via dredged material.
This project was part of the Dredged Material Research Program (DMRP) planned and conducted for the Office, Chief of Engineers, and was authorized by Congress as part of the River and Harbor Act of 1970 [Public Law 91-611, Section 123 (i)]. The objective of the DMRP is to "provide through research - definitive information of the environmental impact of dredging and dredged material disposal operations and to develop technically satisfactory, environmentally compatible, and economically feasible dredging and disposal alternatives, including consideration of dredged material as a manageable resource" (U.S. Army Engineer Waterways Experiment Station, 1973).

This is the final report for Contracts DACW57-75-C-0137 (1 October 1974 to 1 September 1975) and DACW57-76-C-0092 (1 September 1975 to 1 January 1977). The two contracts were administered by U.S. Army Engineer District, Portland.

Dr. Andrew G. Carey, Jr., was the principal investigator and Dr. Michael D. Richardson was the project manager for both contracts at Oregon State University. Mr. Charles G. Boone was the site manager; Mr. Stephen P. Cobb was the site coordinator; and Dr. Robert M. Engler was the project manager for both contracts at the Environmental Resources Division of the Environmental Effects Laboratory, Waterways Experiment Station (WES).

The authors wish to acknowledge the help of personnel at the Portland District Office for providing information on previous dredged disposal activity in the Mouth of the Columbia River (MCR) site region and providing the navigation system used during the first contract. Mr. Charles G. Boone and other personnel at WES are also acknowledged for their cooperation during both contract periods.

We would like to thank Captain Anthony R. Loskota and the crew of the R/V CAYUSE for their excellent help in collection of samples. We would also like to thank the following for helping with the field work: Bob Aman, Laura Banks, John Blicksenderfer, Glenn Boone, Kelley Brooks,

We acknowledge the following for helping with part-time sorting of benthic samples: Bruce Caldwell, Mike Christian, John Hunter, Wayne Laroche, Chris Marlow, Greg Murray, Brian Oliver, and Barbara Sullivan.

The computer programs were written and run by Cleo Adams and Karla Wald. The sediment samples were analyzed by Richard Roberts at the University of Washington. Discussions with Drs. Joe S. Craeger, William Glassley, and Richard W. Sternberg were invaluable with regard to geological and hydrographic data.

Several taxonomists donated their valuable time to confirm identifications of invertebrates. They included Eric Anderson (California Academy of Science, Ophiuroidea), Thomas Bowman (U.S. National Museum, Isopoda), James Carlton (University of California, Davis, Mollusca) Robert Carney (Oregon State University, Holothuroidea), Kristian Fauchald (Allan Hancock Foundation, Polychaeta), Dale Kisker (University of Washington, Pelecypoda), Louis Kornicker (U.S. National Museum, Ostracoda), Michael Kyte (University of Washington, Ophiuroidea), Gary MacDonald (University California, Santa Cruz, Gastropoda), James McLean (L.A. County Museum, Gastropoda), and James Sutton (California Academy of Science, Pelecypoda).

This report would have been impossible without the excellent work of six full-time Research Assistants. They all participated in field work and sorted benthic samples. Beverly Buchanan was responsible for beam trawl samples and identified the Mysidacea, Euphausiacea, Decapoda, Cirripedia and several other groups. Allan Fukuyama identified the Mollusca. Valerie Hironaka was responsible for biomass determination and identified the Echinodermata. Howard Jones maintained sampling equipment and identified the Polychaeta. Michael Kravitz identified Polychaeta. Gertrude Margules was responsible for meiofaunal work and identified Nematoda, Ostracoda and Isopoda. All six helped with the preparation of this final report.
The Directors of WES during the preparation of this report were COL. G.H. Hilt, CE., and COL. J.L. Cannon, CE. Technical Director at WES was Mr. F.R. Brown.
CONTENTS

SUMMARY ... 1

PREFACE ... 5

LIST OF TABLES ... 9

LIST OF FIGURES ... 12

PART I: INTRODUCTION .. 15
 Background .. 15
 Objectives ... 16
 Literature Survey ... 17

PART II: DESCRIPTION OF STUDY AREA 21
 Regional Setting ... 21
 History of Dredged Material Disposal 24

PART III: MATERIALS AND METHODS 27
 Sampling Procedures .. 27
 Sampling Cruises ... 29
 Laboratory Procedures .. 52
 Data Analysis .. 60

PART IV: RESULTS ... 67
 General ... 67
 Pilot Survey .. 68
 Within Station and Between Station Variability 69
 Areal Baseline ... 74
 Seasonal Baseline ... 126
 Experimental Site G ... 150
 Megafaunal Survey .. 168

PART V: DISCUSSION .. 173
 Baseline Studies .. 173
 Experimental Site G ... 179

PART VI: CONCLUSIONS AND SPECULATIONS 193
 Baseline .. 193
 Experimental Site G ... 195

REFERENCES ... 203

APPENDIX CI:* STATION DATA .. 208-A

APPENDIX CII:* SPECIES LISTS ... 313

APPENDIX CIII: COMMUNITY STRUCTURE 382

* Tables C-IA, C-IB, C-IIB, and C-IIC were reproduced on microfiche
 and are enclosed in an envelope attached to the inside of the back
 cover of this report.
<table>
<thead>
<tr>
<th>No.</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>MCR Macrobenthic Station Numbers at Seasonal Baseline Locations</td>
<td>54</td>
</tr>
<tr>
<td>C2</td>
<td>MCR Macrobenthic Station Numbers at Experimental Site G</td>
<td>56</td>
</tr>
<tr>
<td>C3</td>
<td>Conversion Factors for Wet Weight to Ash-Free Dry Weight</td>
<td>59</td>
</tr>
<tr>
<td>C4</td>
<td>Dominant Species Collected at Replicate Stations</td>
<td>70</td>
</tr>
<tr>
<td>C5</td>
<td>Comparison of Values of Community Structure Parameters for Single Replicates, Stations and Total Values for all 20 Summed Replicates</td>
<td>73</td>
</tr>
<tr>
<td>C6</td>
<td>Dominant Species in Assemblage A</td>
<td>80</td>
</tr>
<tr>
<td>C7</td>
<td>Dominant Species at Station Group A_1</td>
<td>82</td>
</tr>
<tr>
<td>C8</td>
<td>Dominant Species at Station Group A_2</td>
<td>83</td>
</tr>
<tr>
<td>C9</td>
<td>Dominant Species at Station Group A_3</td>
<td>85</td>
</tr>
<tr>
<td>C10</td>
<td>Dominant Species at Station Group A_4</td>
<td>87</td>
</tr>
<tr>
<td>C11</td>
<td>Dominant Species in Assemblage B</td>
<td>89</td>
</tr>
<tr>
<td>C12</td>
<td>Dominant Species at Station Group B_1</td>
<td>91</td>
</tr>
<tr>
<td>C13</td>
<td>Dominant Species at Station Group B_2</td>
<td>92</td>
</tr>
<tr>
<td>C14</td>
<td>Dominant Species in Assemblage C</td>
<td>94</td>
</tr>
<tr>
<td>C15</td>
<td>Dominant Species in Assemblage D</td>
<td>96</td>
</tr>
<tr>
<td>C16</td>
<td>Dominant Species at Station Group D_1</td>
<td>97</td>
</tr>
<tr>
<td>C17</td>
<td>Dominant Species at Station Group D_2</td>
<td>99</td>
</tr>
<tr>
<td>C18</td>
<td>Dominant Species at Station Group D_3</td>
<td>101</td>
</tr>
<tr>
<td>C19</td>
<td>Dominant Species in Assemblage E</td>
<td>102</td>
</tr>
<tr>
<td>C20</td>
<td>Species Group 1</td>
<td>104</td>
</tr>
<tr>
<td>C21</td>
<td>Species Group 2</td>
<td>108</td>
</tr>
<tr>
<td>C22</td>
<td>Species Group 3</td>
<td>108</td>
</tr>
<tr>
<td>C23</td>
<td>Species Group 4</td>
<td>110</td>
</tr>
<tr>
<td>C24</td>
<td>Species Group 5</td>
<td>110</td>
</tr>
<tr>
<td>C25</td>
<td>Species Group 6</td>
<td>111</td>
</tr>
<tr>
<td>C26</td>
<td>Species Group 7</td>
<td>112</td>
</tr>
<tr>
<td>C27</td>
<td>Species Group 8</td>
<td>112</td>
</tr>
<tr>
<td>C28</td>
<td>Species Group 9</td>
<td>116</td>
</tr>
<tr>
<td>C29</td>
<td>Species Group 10</td>
<td>116</td>
</tr>
<tr>
<td>No.</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>Species Group 11</td>
<td>117</td>
</tr>
<tr>
<td>C31</td>
<td>Species Group 12</td>
<td>119</td>
</tr>
<tr>
<td>C32</td>
<td>Species Group 13</td>
<td>119</td>
</tr>
<tr>
<td>C33</td>
<td>Sediment Characteristics at the 22 Seasonal Baseline Stations</td>
<td>127</td>
</tr>
<tr>
<td>C34</td>
<td>Values of Community Structure Parameters at the 22 Seasonal Baseline Stations</td>
<td>131</td>
</tr>
<tr>
<td>C35</td>
<td>Dominant Species (BI) Near Experimental Site G, September 1975</td>
<td>154</td>
</tr>
<tr>
<td>C36</td>
<td>Dominant Species (BI) Near Experimental Site G, October 1975</td>
<td>157</td>
</tr>
<tr>
<td>C37</td>
<td>Dominant Species (BI) Near Experimental Site G, January 1976</td>
<td>160</td>
</tr>
<tr>
<td>C38</td>
<td>Dominant Species (BI) Near Experimental Site G, April 1976</td>
<td>164</td>
</tr>
<tr>
<td>C39</td>
<td>Dominant Species (BI) Near Experimental Site G, June 1976</td>
<td>167</td>
</tr>
<tr>
<td>C40</td>
<td>Megabenthic Species Groups</td>
<td>171</td>
</tr>
<tr>
<td>C41</td>
<td>Comparison of Values of Community Structure Parameters Between the Three Extrinsically Derived Station Groups Using a Kruskal-Wallis H Test, Experimental Site G (September 1975)</td>
<td>182</td>
</tr>
<tr>
<td>C42</td>
<td>Comparison of Values of Community Structure Parameters Between the Three Extrinsically Derived Station Groups Using a Kruskal-Wallis H Test, Experimental Site G (October 1975)</td>
<td>184</td>
</tr>
<tr>
<td>C43</td>
<td>Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U Test, Experimental Site G (January 1976)</td>
<td>184</td>
</tr>
<tr>
<td>No.</td>
<td>Table Title</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>C44</td>
<td>Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U Test, Experimental Site G (April 1976)</td>
<td>187</td>
</tr>
<tr>
<td>C45</td>
<td>Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann Whitney U Test, Experimental Site G (June 1976)</td>
<td>187</td>
</tr>
<tr>
<td>C46</td>
<td>A Summary of Significant Seasonal or Station Differences in Abundance of 33 Species at or Near Experimental Site G</td>
<td>189</td>
</tr>
<tr>
<td>C47</td>
<td>Dominant Species Found in the Dredged Area</td>
<td>192</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Location of the Study Area at the Mouth of the Columbia River</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Depth Contours (meters) for MCR Region</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Location of Disposal Sites A, B, D, E, F and Experimental Site G</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Locations of Macrofaunal Stations for October 1974 (C7409C) I</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Locations of Macrofaunal Stations for October 1974 (C7409C) II</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Locations of Macrofaunal Stations for December 1974 (C7412B) and January 1975 (C7501D) I</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Locations of Macrofaunal Stations for December 1974 (C7412B) and January 1975 (C7501D) II</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Locations of Megafaunal Stations for December 1974 (C7412B) and January 1975 (C7501D)</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Locations of Macrofaunal Stations for April 1975 (C7504B)</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>Locations of Megafaunal Stations for April 1975 (C7504B)</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Locations of Macrofauna Stations for June 1975 (C7506C)</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>Locations of Megafaunal Stations for June 1975 (C7506C)</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>Locations of Macrofaunal Stations for September 1975 (C7509E)</td>
<td>41</td>
</tr>
<tr>
<td>14</td>
<td>Locations of Macrofaunal Stations Near Experimental Site G for September 1975 (C7509E)</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>Locations of Megafaunal Stations for September 1975 (C7509E)</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>Locations of Macrofaunal Stations for October 1975 (C7510E)</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

No.	Description	Page
17 | Locations of Macrofaunal Stations Near Experimental Site G for October 1975 (C7510E) | 46 |
18 | Locations of Megafaunal Stations for October 1975 (C7510E) | 47 |
19 | Locations of Macrofaunal Stations for January 1976 (C7601D) | 48 |
20 | Locations of Macrofaunal Stations Near Experimental Site G for January 1976 (C7601D) | 49 |
21 | Locations of Macrofaunal Stations Near Experimental Site G for April 1976 (C7604B) | 50 |
22 | Locations of Macrofaunal Stations Near Experimental Site G for June 1976 (C7606B) | 51 |
23 | Location of 26 Seasonal Baseline Stations | 53 |
24 | Location of 23 Experimental Site G Stations | 55 |
25 | Dissimilarity Values Between Four Replicate Stations (46° 11.5'N, 124° 06.5'W) | 72 |
26 | Dendrogram of Dissimilarity Between Macrofaunal Stations-Areal Baseline | 76 |
27 | Location of Benthic Assemblages and Station Groups in Areal Baseline I | 77 |
28 | Location of Benthic Assemblages and Station Group in Areal Baseline II | 78 |
29 | Dendrogram of Dissimilarity Between Species-Areal Baseline | 105 |
30 | Distribution of *Maldane sarsi* (individuals/m²) | 107 |
31 | Distribution of *Lumbrineris luti* I (individuals/m²) | 113 |
32 | Distribution of *Lumbrineris luti* II (individuals/m²) | 114 |
33 | Distribution of *Chaetozone setosa* I (individuals/m²) | 120 |
34 | Distribution of *Chaetozone setosa* II (individuals/m²) | 121 |
35 | Distribution of *Magelona sacculata* I (individuals/m²) | 122 |
36 | Distribution of *Magelona sacculata* II (individuals/m²) | 123 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Species Group Constancy at Station Groups (i.e. "Cell Density") Based on Station-Species Classification</td>
<td>124</td>
</tr>
<tr>
<td>38</td>
<td>Species Group Constancy in Assemblages (i.e. "Cell Density") Based on Station-Species Classification</td>
<td>125</td>
</tr>
<tr>
<td>39</td>
<td>Bray-Curtis and Czekanowski Dissimilarity Between Seasons for 22 Seasonal Stations</td>
<td>135</td>
</tr>
<tr>
<td>40</td>
<td>Dendrogram of Dissimilarity Between Stations-Experimental Site G, C7506C</td>
<td>151</td>
</tr>
<tr>
<td>41</td>
<td>Dendrogram of Dissimilarity Between Stations-Experimental Site G, C7509E</td>
<td>153</td>
</tr>
<tr>
<td>42</td>
<td>Dendrogram of Dissimilarity Between Stations-Experimental Site G, C7510E</td>
<td>156</td>
</tr>
<tr>
<td>43</td>
<td>Dendrogram of Dissimilarity Between Stations-Experimental Site G, C7601D</td>
<td>159</td>
</tr>
<tr>
<td>44</td>
<td>Dendrogram of Dissimilarity Between Stations-Experimental Site G, C7604B</td>
<td>162</td>
</tr>
<tr>
<td>45</td>
<td>Dendrogram of Dissimilarity Between Stations-Experimental Site G, C7606B</td>
<td>166</td>
</tr>
<tr>
<td>46</td>
<td>Dendrogram of Dissimilarity Between Megafaunal Stations</td>
<td>169</td>
</tr>
<tr>
<td>47</td>
<td>Dendrogram of Dissimilarity Between Megafaunal Species</td>
<td>170</td>
</tr>
<tr>
<td>48</td>
<td>Seasonal Abundance of Spiophanes bombyx in Assemblage C</td>
<td>176</td>
</tr>
<tr>
<td>49</td>
<td>Seasonal Changes of Values of Community Structure Parameters in Assemblage C</td>
<td>177</td>
</tr>
</tbody>
</table>
Background

1. This project was part of the Dredged Material Research Program (DMRP) planned and conducted for the Office, Chief of Engineers, and was authorized by Congress as part of the River and Harbor Act of 1970 [Public Law 91-611, Section 123(i)]. The objective of the DMRP is "to provide - through research - definitive information on the environmental impact of dredging and dredged material disposal operations and to develop technically satisfactory, environmentally compatible, and economically feasible dredging and disposal alternatives, including consideration of dredged material as a manageable resource" (U.S. Army Engineer Waterways Experiment Station, 1973).

2. The mouth of the Columbia River (MCR) was one of five regional study sites, where the effects of open-water disposal of dredged material was studied. These field studies were part of Task 1A (Aquatic Disposal Field Investigations) of the DMRP. Other field studies were conducted in Lake Erie near Ashtabula, Ohio; Eatons Neck in Long Island Sound; in the Gulf of Mexico off Galveston, Texas; and in Elliott Bay, Puget Sound, Washington.

3. This study, designated as work unit 1A07C, was one of five projects being conducted in the MCR study site region. Other work units included studies of bathymetry, bottom sediments, water chemistry, sediment chemistry, phytoplankton, zooplankton, and fisheries. The objectives of the MCR study were to identify and determine the significance of physical, chemical, and biological factors that govern the rate by
which openwater disposal sites are colonized by benthic communities.

4. The study of benthic assemblages in the MCR study site region was divided into two phases. Phase I (Contract DACW57-75-C-0137) included collection of baseline information of benthic assemblages, literature survey, gear evaluation, and planning for the controlled disposal experiment. Phase II (Contract DACW57-76-C-0092) included the controlled disposal experiment and continued collection of seasonal baseline information.

Objectives

5. This contract research was divided into two funding periods with different objectives. The objectives of Phase I "A Study of Benthic Baseline Assemblages in the MCR Disposal Site Area" were as follows:

a. To conduct a literature survey on existing data relating to benthic community classification and structure and to spatial and temporal distribution of species within the study site area and within the regional area of concern (Oregon-Washington continental shelf).

b. To compare the different types of sampling gear with respect to sampling efficiency and effectiveness and to estimate the sampling error of the quantitative collection devices along with the number of replicates necessary to ensure statistically valid results.

c. To collect baseline information on benthic communities in the MCR disposal site region on a spatial and temporal basis. The baseline information included community structure (diversity, biomass, numerical abundance), community classification, and the biology and distribution of numerically dominant species.

d. To select a site for the dredged material disposal experiment for Phase II.

6. The objects of Phase II "An Investigation of the Effects of Open-Water Dredged Material Disposal on Neritic Benthic Assemblages off the Mouth of the Columbia River," were as follows:

a. To define the effects of dredged material disposal on benthic communities.
b. To estimate the recolonization rate and pattern of the affected bottom by benthic organisms.

c. To define the important factors affecting benthic recolonization.

7. No attempts have been made by the authors to separate Phases I and Phase II in this final report.

Literature Survey

8. The following is a brief summary of benthic studies of the Oregon-Washington continental shelf. Within the last four years, two excellent publications on this region have been compiled. The first, *The Columbia River Estuary and Adjacent Ocean Waters, Bioenvironmental Studies* edited by A.T. Pruter and D.L. Alverson (1972) includes 33 articles on the physical, chemical, and biological aspects of this region with an emphasis on radionuclide studies. The second, *Oceanography of the Nearshore Coastal Waters of the Pacific Northwest Relating to Possible Pollution, Volumes I and II* (1971) written by W.C. Renfro, et al., includes 21 chapters, 8 appendices, and a bibliography of more than 3100 entries. Of particular interest in the second publication is chapter 21, "The Nearshore Coastal Ecosystem: an Overview," and Appendix 8, "Annotated Checklist of Plants and Animals."

9. No effort was made in this literature survey to repeat these works. Also studies of demersal fisheries, unicellular organisms, or papers dealing with taxonomic or autecological problems were not included. Intertidal and estuarine papers were also excluded as well as studies in Puget Sound.

10. Prior to 1960 almost no benthic studies had been conducted on the Oregon-Washington continental shelf. The only exceptions were an occasional trawl or dredge sample collected by an expedition on its way to sample other areas.

11. Since 1960, two groups have been active in studying the macro-benthos of this area, Oregon State University and University of Washington. Several other groups including the National Marine Fisheries Service
and the Oregon Fish Commission have extensive collections of demersal fishes, but their studies were not included in this review.

12. Oregon State University has collected extensive benthic samples on the central Oregon continental shelf since 1962. Initial infaunal studies off the Pacific Northwest concentrated on a transect line of stations west of Newport, Oregon. The sampling encompasses broad environmental gradients across the continental shelf and down the continental slope onto a nearshore upper abyssal plain (Carey, 1965). A semi-quantitative anchor-box dredge obtained large volume samples suitable for deep-sea benthic research from a variety of substrate types (Carey and Hancock, 1965). Ninety-two quantitative samples were collected from twenty-six stations; six stations were located across the continental shelf at depths of 30, 50, 100, 150, 175, and 200 m.

13. Abundance of infauna increased across the shelf; the largest numerical density of 3712 individuals/m² and biomass of 46.22 g weight/m² occurred at the edge of the continental shelf at a depth of 200 m (Carey, 1972). At the shallowest station 3.1 km from shore, arthropods accounted for over 50 percent of the fauna; while at the edge of the shelf, 43.7 km from shore, polychaete worms increased in relative abundance to become the predominant major taxonomic group at 48 percent. Inshore the sediments were well-sorted fine sands, while at 200-m depth, the sediments included more fines and were silty-sands.

14. Other infaunal studies were undertaken on the central Oregon continental shelf to determine the relative effects of depth and sediment type on the faunal composition and community structure (Bertrand, 1971; Bertrand and Carey, unpublished manuscript). One hundred and sixty 0.1-m² Smith-McIntyre grab samples were taken at eight seasonal stations between 75- and 450-m depth. Five replicate grabs at each station were analyzed for macrofauna (>1.0 mm in size) per season per station. No seasonal variation was found in either infaunal composition in total species, numbers, or biomass. Average faunal abundance for all stations were 597 individuals/m² and 36.5 g wet weight/m². These values were lower than those reported for the Southern Californian continental shelf and for
New England waters. Four species groups were defined by factor analysis; these were correlated with glauconite sand, beach sand, sandy silt, and silty sand.

15. The macro-epifauna (>1.3 cm) were collected at four stations across the central Oregon continental shelf along the Newport transect line at depths of 50, 100, 150, and 200 m (Carey, 1972). The macro-epibenthos changed from a sparse molluscan assemblage on the inner shelf to one dominated by numerous echinoderms and arthropoda at the shelf edge. The greatest abundance of epifauna was at the shelf edge; a continued increase across the shelf was observed.

16. Benthic communities on the Washington continental shelf were studied by Lie (1969), Lie and Kisker (1970), and Lie and Kelley (1970). Lie collected replicate 0.2-m² Van Veen grabs from 48 stations (mostly three per station) along the Washington coast and in the Juan de Fuca Strait, in the summers of 1967 and 1968. The samples were sieved through a 1.00-mm screen and the Crustacean, Lamellibranchia, and Echinodermata were identified and counted. Wet weights for all taxonomic groups were determined. The mean ash-free dry weight was 1.92 g/m² (Lie, 1969). The inshore sand stations were dominated by small crustaceans with a life span of about one year and had a mean ash-free dry weight of 1.351 g/m². Two other groups of stations located further offshore were dominated by polychaetes and echinoderms with life spans of two years or more and had mean ash-free dry weights of 2.272 and 2.335 g/m².

17. Lie and Kelley (1970) used classification and ordination techniques to determine the species and station patterns for all 48 stations. Techniques included Kendall's rank correlation coefficient, Fager's recurrent group analysis, and factor analysis (principal component analysis with a varimax rotation). Using these techniques, Lie and Kelley extracted three station groups and six species groups from the data. The factor analysis, which used abundance data to group both species and stations, was preferred by Lie and Kelley to Kendall's rank correlation and Fager's recurrent group analysis, which only used presence and absence data. All techniques yielded similar results. Although the first five eigenvalues accounted for greater than 50 percent of the
total variance in the factor analysis of station groups and species groups, no attempt was made to interpret the resulting patterns.

18. Lie and Kisker (1970) determined the species composition and structure of three benthic communities extracted from Lie's previous paper. Diversity values were calculated only on the Crustacean, Lamellibranchia, and Echinodermata data. The deep water mud-bottom community had a mean H (Brillouin-diversity function - see methods in this paper) value of 2.9 with a range of 1.8 to 4.0. The intermediate depth sand-bottom community had a mean (H) diversity value of 2.6 with a range of 0.9 to 3.6. The shallow water sand-bottom community had a mean (H) diversity value of 2.0 with a range of 0.1 to 3.6. From the data presented in the paper, the diversity values are related to both species richness and evenness components of diversity. The lower diversity values in the shallow water sand-bottom community were attributed by Lie and Kelley to the physical stress of wave action.
PART II. DESCRIPTION OF THE STUDY AREA

Regional Setting

19. The study area is located adjacent to the mouth of the Columbia River on the Oregon-Washington continental shelf (Figure C1). The Atomic Energy Commission (AEC), because of its responsibility for monitoring the effects of radioactive discharge from nine nuclear reactors built 600 km above the mouth of the Columbia River at Richland, Washington, has sponsored extensive research of the Oregon-Washington continental shelf. A comprehensive review of this AEC sponsored research was presented in Pruter and Alverson (1972). The Corps of Engineers has sponsored extensive research on the MCR aquatic disposal site as part of the Dredged Material Research Program. The results of these studies will be published as appendices to a summary site report.

20. The study area is bounded by latitude 46° 19' on the north and 46° 06' on the south and lies between the 10- and 100-m contours. Water depths supplied by the University of Washington are shown in Figure C2.

21. The dominant hydrographic feature in the study area is the Columbia River. The average river discharge is \(6.0 \times 10^8\) m\(^3\)/day with a spring maximum of \(2.9 \times 10^9\) m\(^3\)/day and a fall minimum of \(1.6 \times 10^8\) m\(^3\)/day (Barnes et al., 1972). The Columbia River plume influences an area from 40° to 49° N and 600 km offshore (Barnes et al., 1972). Reduction of salinities near the mouth of the Columbia River are generally restricted to the upper 15 m of the water column. Salinities below 15 m vary little from 33 to 34 °/oo (Duxbury, 1972).

22. Surface current direction and speed in the study site are predominantly controlled by large-scale regional weather systems, the Columbia River flow, and tides. The general current direction is toward the shore during the winter with downwelling occurring along the coast. During the summer the surface currents set offshore and upwelling occurs. The Columbia River plume moves north and inshore under the influence of southerly winds in the winter and moves south and offshore under the influence of northerly winds in the summer (Barnes et al., 1972). Bottom
Figure C1. Location of the Study Area at the Mouth of the Columbia River
Figure C2. Depth Contours (meters) for MCR Region.
currents flow northward at 1 to 2 km/day in depths of 40-100 m. The bottom currents inshore of 40 m and near the Columbia River are predominately toward the mouth of the Columbia River (Barnes et al., 1972).

23. Tides at the mouth of the Columbia River are mixed semidiurnal with a mean tidal range of 2.0 m. Extreme low water has been estimated at 0.9 m below mean lower low water and extreme high water at 3.5 m above mean lower low water (Neal, 1972).

24. McManus (1972) divided the continental shelf near the Columbia River mouth into six sedimentological units: a nearshore sand deposit north of the Columbia to depths of 55 m; an inshore sand wedge extending south of the Columbia River to depths of 73 m; an outer-shelf band of silty sand both north and south of the Columbia River; a shelf-break band of relict sand; a rough topography of relict sediment southwest of the Columbia River; and a deposit of silty sediment which trends northwesterly along the outer shelf from the mouth of the Columbia River. A more detailed analysis of sediment texture and mineralogy of sediments off the mouth of the Columbia River is presented by Sternberg et al. 1977 in Appendix A of this series.

History of Dredged Material Disposal

25. Maintenance dredging of the Columbia River entrance began in the 1880's to allow large ships to safely enter the river. In 1895 a permanent south jetty (7.2 km long) was built. The south jetty was extended to 10.6 km in 1913, and a north jetty (3.8 km long) was built in 1917. Lockett (1963) reported that 1.15×10^6 m3 of sediment was dredged from the entrance of the mouth of the Columbia River between 1939 and 1955. In 1956 the Corps of Engineers increased the depth of the entrance channel to 14.6 m and currently maintains this channel depth by annual dredging.

26. Since 1956 the Corps of Engineers have used four open-water areas to deposit material dredged from the channel (Figure C3). In addition disposal area D is used if weather prohibits open-water disposal. The most active disposal site is B where 24.3×10^6 m3 of dredged material was deposited from 1957 to 1975. In that same period disposal
Figure C3. Location of Disposal Sites A, B, D, E, F and Experimental Site G.
site A received $1.3 \times 10^6 \text{ m}^3$ of dredged material; disposal site D, $9.6 \times 10^6 \text{ m}^3$; disposal site E, $4.5 \times 10^6 \text{ m}^3$; and disposal site F, $0.5 \times 10^6 \text{ m}^3$. Experimental site G received $0.45 \times 10^6 \text{ m}^3$ dredged material between 9 July 1975 and 27 August 1975.
PART III: MATERIALS AND METHODS

Sampling Procedures

27. All samples were collected from the Oregon State research vessel CAYUSE. The 24.4-m (80-ft) long R/V CAYUSE is equipped with a main working winch with a 9.53 mm (3/8-in) wire and a smaller hydrographic winch with 4.76-mm (3/16-in) wire. Samples were collected with a 0.1-m² Smith-McIntyre grab, and a 3-m-wide metered beam trawl. The Smith-McIntyre grab and beam trawl were described in Carey and Heyamoto (1972). Station locations were determined by a Del Norte navigation system or Loran-A and radar fixes.

28. The Smith-McIntyre grab, which samples a surface area of 0.1 m², was used to obtain samples of macrofauna and sediment. The surface of the sediment was relatively undisturbed and the sediment volumes for replicate grabs within a single station were nearly equal (Appendix CI). Leakage from the Smith-McIntyre grab was negligible because the sampling gear was well maintained. Grabs were taken using the hydrographic winch. Two metal screens (0.42-mm apertures) allowed water to pass through the grab during descent (50 m/min) and reduced the shock wave as it neared the bottom. During ascent (50 m/min), the two flaps closed over the screens to eliminate mixing of the sediment surface.

29. The grab was placed on a specially designed cradle after retrieval. One screen door was removed and the contents of the grab were inspected to determine whether the grab penetrated satisfactorily into the substrate. The depth of penetration was then measured to the nearest millimeter. The sediment type was crudely determined by touch, and any important observations about the sample were noted.

30. The contents of Smith-McIntyre grabs obtained for macrofauna analysis were washed into an open 38-ℓ (10-gal) plastic container underneath the grab cradle. The cradle was so constructed that all the contents of the grab and the water used to wash the grab entered the plastic container without loss. The grab sample was then washed through a metal
screen with 1.00-mm aperture. The material retained on the screen was transferred to plastic containers and preserved in 10 percent formalin buffered with NaH₂BO₃.

31. If the grab was to be used for sediment analysis, the upper 1-cm of surface of the grab contents was removed by hand, placed in a labeled plastic bag, and frozen. The remaining contents of the grab were discarded. Frozen sediment samples were sent to the University of Washington, Seattle, for analysis.

32. Meiobenthic samples (>62μ) were obtained with a 0.1-m² Smith-McIntyre grab or a multiple cover on the first two cruises. Because of the long sorting time (mean, 45-hr/sample) and problems with identification, the meiobenthic (>62μ) sampling was not continued. One grab per station on subsequent cruises was washed through a 0.50-mm screen in order to capture juvenile macrofauna. The 0.50-mm samples were rescreened in the laboratory into two fractions, the 0.50 to 1.00-mm and the 1.00-mm fraction. The 1.00 mm fractions were treated as macrofauna samples.

33. The 3-m-wide metered beam trawl was used to sample the macrofauna. The trawl net was attached to a rigid frame 3-m wide and 1-m high. The net was a 3-m otter trawl with 3.81-cm (1 1/2-in) stretch mesh and a 1.27-cm (1/2-in) stretch mesh liner. The distance covered over the bottom was measured with odometer wheels attached to each side of the frame. The beam trawl was towed with the 9.53-mm (3/8-in) wire of the main working winch on the R/V CAYUSE. After the wheel revolution counters were read, the trawl was lowered at 35 m/min, while the ship steamed forward at 3.7 km/hr (2.0-knots). The trawl was towed across the bottom for 30 min. (scope ratio 4:1) and was retrieved at 35 m/min (Carey and Heyamoto, 1972). The wheel revolution counter was read and the sample was removed from the net. Larger fish and Cancer magister were identified, measured, and returned to the sea. The remainder of the catch was placed in 38-L (10-gal) plastic containers and preserved in 10 percent formalin buffered with NaH₂BO₃.

34. It was convenient to divide the samples obtained during this contract period into six categories: pilot samples, areal baseline
samples, seasonal baseline samples, experimental site G samples, sampling efficiency samples, and megafauna samples. In many cases a sample was included in more than one category. For example, the samples used for control stations for experimental site G are also part of the seasonal baseline.

35. Additional data were obtained at each station on all cruises except the pilot cruise. Surface water temperature was determined with a stem thermometer. The wave height and direction, cloud type, and percent cloud cover were estimated. The wind direction and velocity, air temperature, and barometric pressure were measured. The time, latitude, longitude, and bottom depth were obtained for each sample. The length of tow along with location was determined for each beam trawl.

Sampling Cruises

36. During the contract period (1 October 1974 to 31 December 1977), 12 sampling cruises were attempted. Ten cruises were successful and two were terminated early because of bad weather. The 12 sampling cruises are described in the following paragraphs.

C7409C2 (October 1-2, 1974)

37. The first cruise was a pilot survey. The results of the pilot survey and the data on the distribution of sediments provided by the University of Washington were used to plan subsequent sampling strategies. A total of forty-six 0.1-m\(^2\) Smith-McIntyre grab samples were obtained, one at each station. Twenty-one stations were located in the vicinity of dredged material disposal site B (Figure C4) and 25 stations were located in the surrounding area (Figure C5).

C7411F (November 18-24, 1974)

38. The second sampling cruise was aborted because of storm and gale conditions in the study area.

C7412B (December 4-8, 1974)

39. The third sampling cruise obtained samples for the areal baseline and sampling efficiency study. A total of 305 0.1-m\(^2\) Smith-McIntyre
Figure C4. Locations of Macrofaunal Stations for October 1974 (C7409C) I.
grab samples for macrofauna were obtained, 5 per station, at 57 stations
and 20 per station at 1 station. Twenty-two of the Smith-McIntyre sta-
tions were located in the vicinity of disposal site B and the remaining
35 stations were located in the surrounding areas. The 20 replicate
samples taken at one station were located near a site which later became
experimental site G. Fifty-eight sediment samples (one per station) were
also obtained and sent to the University of Washington. Locations for
these samples plus those taken in January 1975 (C7501D) are shown in
Figures C6 and C7. Metered beam trawls were obtained at two stations
(two per station) located near experimental site G (Figure C8).

C7501D (January 19–25, 1975)

40. The fourth sampling cruise completed the areal baseline. A
total of 250 0.1-m2 Smith-McIntyre grabs were obtained for macrofaunal
work, 5 per station at 50 stations. Twelve of the stations were located
near disposal site B; 12 stations were located in the surrounding areas;
and 15 stations were located in other disposal areas (A, E, and F) or
occupied in common with MCR Chemical Baseline Studies. The remaining 11
stations were not sorted because they were located out of the immediate
area of interest. Fifty sediment samples were also obtained (one per
station) and sent to the University of Washington. Station locations
are shown in Figures C6 and C7.

C7504B (April 18–23, 1975)

41. The fifth sampling cruise began the seasonal baseline work.
Twenty-six locations were chosen to represent the different assemblages
found in the MCR disposal site region. Locations were chosen so that at
least two stations were located in each assemblage. The seasonal stations
also included all the disposal sites (A, B, E, and F), the experimental
site (G), and control stations for the experimental site G (Figure C9).
Six replicate Smith-McIntyre grabs were obtained at each of 26 stations: 5
for macrofauna (4 replicates at each station were screened through a 1.00
mm screen and the fifth replicate was screened through a 0.50-mm screen)
and one for sediment. Beam trawls were obtained at six stations (two
trawls/station) for larger megafauna. All beam trawl stations were
located south of experimental site G (Figure C10). Poor weather condi-
tions prevented collection of beam trawls at eight additional stations.
Figure C6. Locations of Macrofaunal Stations for December 1974 (C7412B) and January 1975 (C7501D)
Figure C7. Locations of Macrofaunal Stations for December 1974 (C7412B) and January 1975 (C7501D) II
Figure C8. Locations of Megafaunal Stations for December 1974 (C7412B) and January 1975 (C7501D)
Figure C9. Locations of Macrofaunal Stations for April 1975 (C7504B)
Figure C10. Locations of Megafaunal Stations for April 1975 (C7504B)
42. On the sixth sampling cruise, the seasonal baseline sampling was continued, experimental site G and the area that was to be dredged were sampled. Five replicate 0.1-m2 Smith-McIntyre grab samples were obtained at each of 37 stations (185 grabs) for macrofauna (four, 1.00 mm; one, 0.50 mm), and one replicate grab sample for sediment (37 grabs). Locations for 26 seasonal stations were the same as on the April 1975 cruise (C7504B). Five stations including one seasonal station were located in experimental site G. The remaining five stations were located in the Columbia River entrance channel in the area that was to be dredged. Twenty-two metered beam trawls were also obtained (two per station at nine stations, one per station at four stations). Station locations for Smith-McIntyre and beam trawl samples are shown in Figures C11 and C12 respectively.

43. No biological samples were obtained on this cruise because of bad weather. Twenty-seven sediment samples were collected and sent to the University of Washington, Seattle, for analysis.

44. On the eighth sampling cruise the seasonal baseline sampling was continued and experimental site G was sampled after the disposal operation. Five replicate 0.1-m2 Smith-McIntyre grab samples were obtained at each of 50 stations (250 grabs) for macrofauna (four, 1.00 mm; one, 0.50 mm), and one grab sample was obtained for sediment (50 grabs). Locations for the 26 seasonal stations were the same as on the April 1975 cruise (C7504B). An additional 24 stations were located in or near experimental site G. Station locations are shown in Figures C13 and C14. Twenty-seven metered beam trawls were obtained at 14 stations. Of the 27 beam trawls, 10 were located near experimental site G, 4 south of experimental site G, 6 near disposal sites B and E and 6 further offshore as part of the seasonal studies. Beam trawl stations are shown in Figure C15. In addition to the biological samples, 22 sediment samples were obtained in experimental site G at stations not occupied for biological work.

45. On the ninth sampling cruise, experimental site G and
Figure C.11. Locations of Macrofauna Stations for June 1975 (C7506C)
Figure C12. Locations of Megafaunal Stations for June 1975 (C7506C)
Figure C13. Locations of Macrofaunal Stations for September 1975 (C7509E)
Figure C14. Locations of Macrofaunal Stations Near Experimental Site G for September 1975 (C7509E)
Figure C15. Locations of Megafaunal Stations for September 1975 (C7509E)
control stations for experimental site G were sampled. Five replicate 0.1-m² Smith-McIntyre grab samples were obtained at each of 31 stations for macrofauna (four, 1.00 mm; one, 0.50 mm), and one sediment sample was obtained from each station. Station locations are shown in Figures C16 and C17. Eight metered beam trawl samples were also obtained in or near experimental site G (Figure C18).

C7601D (January 3-10, 1976)

46. On the tenth sampling cruise, the seasonal baseline sampling was completed and sampling experimental site G was continued. Five replicate 0.1-m² Smith-McIntyre grab samples were obtained from 43 stations for macrofauna (four, 1.00 mm; one, 0.50 mm). Locations for these samples were the same as on the September 1975 cruise (C7509E) (Figures C19 and C20). Two stations in the experimental site and five seasonal stations were not sampled because of poor weather conditions. One sediment sample was obtained from each station. No beam trawl samples were obtained because of adverse weather conditions.

C7604B (April 19-20, 1976)

47. On the eleventh sampling cruise, experimental site G and control stations for experimental site G were sampled. Five replicate 0.1-m² Smith-McIntyre grab samples were obtained from each of 12 stations for macrofauna (four, 1.00 mm; one, 0.50 mm). One sediment sample was also obtained from each station (Figure C21).

C7606B (June 7-8, 1976)

48. On the twelfth sampling cruise, the same 12 stations occupied on the April 1976 cruise (C7604B) were sampled (Figure C22). Five replicate 0.1-m² Smith-McIntyre grab samples were obtained from each of 12 stations for macrofauna (four, 1.00 mm; one, 0.50 mm). One sediment sample was also obtained from each station. This cruise completed the field work for this contract.

General Information

49. Station locations and grab number for every 0.1 m² Smith-McIntyre grab sample are presented in Appendix CI. Also included are cruise number, time, water depth, sediment volume for biological samples,
Figure C16. Locations of Macrofaunal Stations for October 1975 (C7510E)
Figure C17. Locations of Macrofaunal Stations Near Experimental Site G for October 1975 (C7510E)
Figure C18. Locations of Megafaunal Stations for October 1975 (C7510E).
Figure C19. Locations of Macrofaunal Stations for January 1976 (C7601D).
Figure C20. Locations of Macrofaunal Stations Near Experimental Site G for January 1976 (C7601D)
Figure C22. Locations of Macrofaunal Stations Near Experimental Site G for June 1976 (C7606B)
sediment type, screen size for biological samples, and comments. Water
depths were not corrected for tides. Sediment data was provided by the
University of Washington. Sediment volume was calculated using the
relationship between depth of penetration and sediment volume. Station
locations for metered beam trawl are also present in Appendix CI.

50. Station locations were determined by a Del Norte navigation
system where possible. Stations were considered to be circles with a
radius of approximately 100 m. The reported accuracy of the Del Norte
system is one meter. The Del Norte system was not available on cruises
C7409C and C7412B. Loran-A and radar fixes were used to determine loca-
tions on these cruises. The accuracy of the Loran A and radar fixes near
the mouth of the Columbia River was approximately 250 m. On C7501D, 28
of the 50 stations were located by Del Norte, the remaining 22 stations
were located by Loran-A and radar. All stations except those farthest
offshore were located by Del Norte on cruises C7504B, C7506C, C7508E,
C7601A, C7604B, and C7606B.

51. In order to facilitate the presentation and interpretation of
the results of 2,040 samples obtained at 366 stations, a new set of num-
bers were assigned to stations that were occupied on more than one cruise.
The new location numbers designated locations for seasonal baseline sta-
tions, and stations located in experimental site G. Station designations
for the pilot study and the seasonal baseline remained the same. The 26
seasonal stations were part of the R-series (1-26). The locations are
presented in Figure C23 and Table C1. Stations located in experimental
site G were part of the K-series (1-40). The number designations are the
same as those used by the University of Washington (Figure C24). Station
numbers that correspond to these locations are presented in Table C2.

Laboratory Procedures

Megafauna samples (beam trawls)

52. All beam trawl samples were sorted into major taxonomic groups
by eye. The fish were identified, measured, and returned to 10 percent
Figure C23. Location of 26 Seasonal Baseline Stations
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>46° 09.0'</td>
<td>124° 00.5'</td>
<td>60</td>
<td>183</td>
<td>206</td>
<td>271</td>
<td>349</td>
</tr>
<tr>
<td>R-2</td>
<td>46° 09.0'</td>
<td>124° 04.5'</td>
<td>51</td>
<td>162</td>
<td>207</td>
<td>286</td>
<td>351</td>
</tr>
<tr>
<td>R-3</td>
<td>46° 09.0'</td>
<td>124° 07.5'</td>
<td>52</td>
<td>181</td>
<td>208</td>
<td>285</td>
<td>324</td>
</tr>
<tr>
<td>R-4</td>
<td>46° 09.0'</td>
<td>124° 10.5'</td>
<td>53</td>
<td>160</td>
<td>209</td>
<td>284</td>
<td>325</td>
</tr>
<tr>
<td>R-6</td>
<td>46° 17.0'</td>
<td>124° 12.0'</td>
<td>142</td>
<td>169</td>
<td>214</td>
<td>288</td>
<td>364</td>
</tr>
<tr>
<td>R-10</td>
<td>46° 14.0'</td>
<td>124° 06.5'</td>
<td>73</td>
<td>181</td>
<td>187</td>
<td>275</td>
<td>359</td>
</tr>
<tr>
<td>R-12</td>
<td>46° 15.2'</td>
<td>124° 09.4'</td>
<td>115</td>
<td>173</td>
<td>185</td>
<td>273</td>
<td>-</td>
</tr>
<tr>
<td>R-13</td>
<td>46° 15.0'</td>
<td>124° 09.0'</td>
<td>84</td>
<td>179</td>
<td>190</td>
<td>278</td>
<td>-</td>
</tr>
<tr>
<td>R-14</td>
<td>46° 15.0'</td>
<td>124° 09.0'</td>
<td>73</td>
<td>181</td>
<td>187</td>
<td>275</td>
<td>359</td>
</tr>
<tr>
<td>R-15</td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td>75</td>
<td>182</td>
<td>188</td>
<td>276</td>
<td>358</td>
</tr>
<tr>
<td>R-16</td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td>90</td>
<td>176</td>
<td>193</td>
<td>280</td>
<td>361</td>
</tr>
<tr>
<td>R-17</td>
<td>46° 15.0'</td>
<td>124° 10.5'</td>
<td>127</td>
<td>175</td>
<td>192</td>
<td>291</td>
<td>360</td>
</tr>
<tr>
<td>R-18</td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td>57</td>
<td>193</td>
<td>195</td>
<td>221</td>
<td>351</td>
</tr>
<tr>
<td>R-19</td>
<td>46° 11.7'</td>
<td>124° 06.3'</td>
<td>104, 5, 6, 7</td>
<td>166</td>
<td>197</td>
<td>236</td>
<td>356</td>
</tr>
<tr>
<td>R-20</td>
<td>46° 12.5'</td>
<td>124° 06.5'</td>
<td>121</td>
<td>167</td>
<td>196</td>
<td>222</td>
<td>347</td>
</tr>
<tr>
<td>R-21</td>
<td>46° 14.5'</td>
<td>124° 05.6'</td>
<td>112</td>
<td>158</td>
<td>184</td>
<td>281</td>
<td>-</td>
</tr>
<tr>
<td>R-22</td>
<td>46° 14.5'</td>
<td>124° 10.0'</td>
<td>91</td>
<td>177</td>
<td>194</td>
<td>279</td>
<td>362</td>
</tr>
<tr>
<td>R-23</td>
<td>46° 18.0'</td>
<td>124° 10.0'</td>
<td>145</td>
<td>168</td>
<td>215</td>
<td>287</td>
<td>365</td>
</tr>
<tr>
<td>R-24</td>
<td>46° 11.0'</td>
<td>124° 05.0'</td>
<td>123</td>
<td>165</td>
<td>202</td>
<td>268</td>
<td>353</td>
</tr>
<tr>
<td>R-25</td>
<td>46° 13.9'</td>
<td>124° 08.0'</td>
<td>82</td>
<td>180</td>
<td>186</td>
<td>274</td>
<td>-</td>
</tr>
<tr>
<td>R-26</td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td>85</td>
<td>178</td>
<td>189</td>
<td>277</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure C24. Location of 23 Experimental Site G Stations. Stations R24, R28, and R29 are outside area shown.
<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Station Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-1</td>
<td>46° 11.25'</td>
<td>124° 06.33'</td>
<td>June 1975 : 223</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sept 1975 : 228</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oct 1975 : 234, 308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jan 1976 : 330, 367</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>April 1976 : 368, 388</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>June 1976 : 387</td>
</tr>
<tr>
<td>K-5</td>
<td>46° 11.77'</td>
<td>124° 05.65'</td>
<td></td>
</tr>
<tr>
<td>K-7</td>
<td>46° 11.64'</td>
<td>124° 06.50'</td>
<td></td>
</tr>
<tr>
<td>K-9</td>
<td>46° 11.67'</td>
<td>124° 05.90'</td>
<td></td>
</tr>
<tr>
<td>K-11</td>
<td>46° 11.68'</td>
<td>124° 05.76'</td>
<td></td>
</tr>
<tr>
<td>K-14</td>
<td>46° 11.59'</td>
<td>124° 06.22'</td>
<td></td>
</tr>
<tr>
<td>K-16</td>
<td>46° 11.56'</td>
<td>124° 06.02'</td>
<td></td>
</tr>
<tr>
<td>K-10</td>
<td>46° 11.50'</td>
<td>124° 05.80'</td>
<td></td>
</tr>
<tr>
<td>K-20</td>
<td>46° 11.60'</td>
<td>124° 05.58'</td>
<td></td>
</tr>
<tr>
<td>K-22</td>
<td>46° 11.47'</td>
<td>124° 06.24'</td>
<td></td>
</tr>
<tr>
<td>K-26</td>
<td>46° 11.55'</td>
<td>124° 05.76'</td>
<td></td>
</tr>
<tr>
<td>K-27</td>
<td>46° 11.54'</td>
<td>124° 05.62'</td>
<td></td>
</tr>
<tr>
<td>K-20</td>
<td>46° 11.43'</td>
<td>124° 06.36'</td>
<td></td>
</tr>
<tr>
<td>K-21</td>
<td>46° 11.45'</td>
<td>124° 06.00'</td>
<td></td>
</tr>
<tr>
<td>K-34</td>
<td>46° 11.45'</td>
<td>124° 05.77'</td>
<td></td>
</tr>
<tr>
<td>K-36</td>
<td>46° 11.33'</td>
<td>124° 06.26'</td>
<td></td>
</tr>
<tr>
<td>K-38</td>
<td>46° 11.35'</td>
<td>124° 05.99'</td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>46° 11.35'</td>
<td>124° 05.66'</td>
<td></td>
</tr>
<tr>
<td>R-19</td>
<td>46° 11.70'</td>
<td>124° 06.10'</td>
<td></td>
</tr>
<tr>
<td>R-24</td>
<td>46° 11.00'</td>
<td>124° 05.00'</td>
<td></td>
</tr>
<tr>
<td>R-27</td>
<td>46° 11.50'</td>
<td>124° 06.00'</td>
<td></td>
</tr>
<tr>
<td>R-28</td>
<td>46° 10.00'</td>
<td>124° 04.00'</td>
<td></td>
</tr>
<tr>
<td>R-29</td>
<td>46° 09.00'</td>
<td>124° 03.50'</td>
<td></td>
</tr>
<tr>
<td>R-31</td>
<td>46° 11.50'</td>
<td>124° 05.50'</td>
<td></td>
</tr>
<tr>
<td>R-32</td>
<td>46° 11.70'</td>
<td>124° 06.00'</td>
<td></td>
</tr>
<tr>
<td>R-33</td>
<td>46° 11.25'</td>
<td>124° 06.00'</td>
<td></td>
</tr>
</tbody>
</table>
formalin buffered with NaH₂BO₃. Invertebrates were sorted into major taxonomic groups and transferred to 70 percent isopropyl alcohol.

Macrofauna samples (Smith-McIntyre grabs)

53. All Smith-McIntyre grab samples were transferred to a 70 percent isopropyl alcohol within two weeks after being collected. Samples processed on a 0.50-mm screen were rescreened into two fractions (>1.00 and 1.00-0.50 mm) in the laboratory. The grab samples were then sorted under a Wild M-3 stereomicroscope into major taxa.

54. The screen size, sample volume, debris composition, date sorted, sorting person, sorting time, aliquot (always whole), preservation, and any comments were noted. The number of individuals of each taxonomic group were counted and placed in separate vials.

Identification

55. The responsibility for different taxonomic groups was divided among all personnel at the beginning of the project. They were responsible for the proper identification of that group, contacting the appropriate taxonomist for help when needed, and the study of the biology of dominant species within that group.

Biomass

56. Wet weights for each taxonomic group from the Smith-McIntyre grab samples were determined. The samples that were preserved in 70 percent isopropyl alcohol were blotted on paper towels to remove excess surface moisture. Loss of moisture from animals while blotting results from two processes. First there is a rapid loss of moisture from the surface of the animals, then a slow loss of internal moisture through the surface of the animal. Animals were blotted until moisture was no longer picked up by the paper towel (approximately 1-10 min). The length of time depended on the size of the animal, the number of animals weighed, and the taxonomic group. The methods are described in Weinberg (1971). Wet weights were determined on a 45-type Mettler analytical balance. Mollusks were weighed in their shells; most polychaetes were weighed without tubes; and all animals were cleaned of sediment or other debris. The samples were not burned to obtain ash-free dry weights because study
of the biology of the dominant species ashes is impossible and because of the considerable taxonomic value of the collections. Numerous undescribed species were found.

57. Conversion factors from wet weight to ash-free dry weight were calculated for each taxonomic group. Preserved animals were weighed and placed in an aluminum pan. The sample was dried in a drying oven (65°C) and placed in a desiccator overnight. The sample and pan were then weighed. This process was repeated until a constant weight was obtained. The sample was then ashed in a muffle furnace for 24 hr at 525°C. After ashing, the sample was placed in a desiccator for 24 hr and weighed. The conversion factor was calculated by subtraction of the weight of the pan plus ashed remains of the sample from the dry weight of the sample and pan and the division of this difference by the weight of the sample. This process was repeated several times for each taxonomic group. Table C3 presents the conversion factor used to convert wet weights to ash-free dry weights. Also included are the number of values for each taxonomic group and the standard deviation for each mean. All conversion factors except for Decapoda and Isopoda had a standard deviation of less than 20 percent. Decapoda and Isopoda did not contribute significantly to the biomass at any station, therefore ash-free dry weights reported for each station are within 20 percent of the actual values.

Sediment samples

58. All sediment samples in this report were analyzed by the University of Washington. The methods, results, and discussion of these data were included in a final report to the U.S. Army Corps of Engineers (Sternberg et al., 1977). The median diameter (mdₚ), standard deviation or sorting (Oₚ), first skewness (α₁ₚ), second skewness (α₂ₚ) and kurtosis (βₚ) were computed using equations given by Inman (1952). Percentages of sand, silt, and clay for each sediment sample were plotted on a ternary diagram, and the sediment was characterized by nomenclature proposed by Shepard (1954).
Table C3
Conversion Factors for Wet Weight to Ash Free Dry Weight

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th># Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophiuroidea</td>
<td>0.107</td>
<td>0.012 (11%)</td>
<td>15</td>
</tr>
<tr>
<td>Holothuroidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole, eviscerated and tails</td>
<td>0.132</td>
<td>0.027 (20%)</td>
<td>9</td>
</tr>
<tr>
<td>whole, noneviscerated</td>
<td>0.050</td>
<td>0.008 (17%)</td>
<td>7</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0.077</td>
<td>0.008 (10%)</td>
<td>25</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siligua patula</td>
<td>0.106</td>
<td>0.007 (6%)</td>
<td>4</td>
</tr>
<tr>
<td>Acila castrensis</td>
<td>0.087</td>
<td>0.002 (2%)</td>
<td>4</td>
</tr>
<tr>
<td>Others</td>
<td>0.078</td>
<td>0.015 (19%)</td>
<td>10</td>
</tr>
<tr>
<td>Polychaeta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubed</td>
<td>0.046</td>
<td>0.008 (17%)</td>
<td>15</td>
</tr>
<tr>
<td>Untubed</td>
<td>0.160</td>
<td>0.028 (17%)</td>
<td>15</td>
</tr>
<tr>
<td>Decapoda</td>
<td>0.144</td>
<td>0.043 (30%)</td>
<td>29</td>
</tr>
<tr>
<td>Cumacea</td>
<td>0.111</td>
<td>0.008 (7%)</td>
<td>17</td>
</tr>
<tr>
<td>Mysid</td>
<td>0.184</td>
<td>0.021 (11%)</td>
<td>19</td>
</tr>
<tr>
<td>Isopod</td>
<td>0.140</td>
<td>0.041 (29%)</td>
<td>19</td>
</tr>
<tr>
<td>Amphipod</td>
<td>0.136</td>
<td>0.007 (5%)</td>
<td>17</td>
</tr>
<tr>
<td>Nemertea</td>
<td>0.161</td>
<td>0.025 (15%)</td>
<td>5</td>
</tr>
<tr>
<td>Sipunculid*</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echiurid*</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Conversion factor for polychaeta used.
Data Analysis

Baseline (macrofauna)

59. Two different approaches to analysis of benthic data from the areal and seasonal baseline were used. The first approach was classification of species and site groupings (Clifford and Stephenson, 1975). Species were classified according to their patterns of distribution among the sites and sites were classified according to their species content. The second approach was community structure analysis. Each site was characterized by its biotic content (density, biomass, dominant species and diversity). The data were analyzed by programs written for the CDC Cyber-73 computer (Richardson, 1976).

60. The classification analysis consisted of a multioptional set of programs that were used for data reduction and pattern recognition from a species-site data matrix. The programs were divided into four runs. Run I (COORDIN) ordered the original data into a site-species matrix. In the second run (CRUNCH), site-site and species-species resemblance matrices were calculated. Options in CRUNCH included data standardization (none, site, and species), data transformation [none, square root, log (x + 1), or presence-absence], and choice of resemblance function (Dominance-affinity similarity, Bray-Curtis, Manhattan metric, and Canberra metric dissimilarity). Run III (CLSTR) consisted of seven clustering strategies that were used to group species or sites in the form of a dendrogram. CLSTR was modified from Anderberg (1973) for use on the CDC Cyber. Run IV (SWITCH) reordered the original site-species data matrix into a two-way coincidence table according to the results of the site and species clustering dendrograms. SWITCH was used to indicate the strength of pattern in the data, reallocate misclassified sites and species, and adopt levels of classification.

61. Subjective decisions were required by the investigator at several points in the classification analysis. Since the goals of classification in this report were data reduction and pattern recognition and not probabilistic interpretation of the data structure, subjective decisions seemed appropriate. The authors agree with Boesch (1973) that
the investigator should remain the ultimate arbiter in the classification of ecological data.

62. The subjective decisions including adoption of levels of classification, reallocation of misclassified sites and species, types of data transformation and standardization, and elimination of rare species are discussed in the following paragraphs and under the appropriate sections in the results. Most decisions are based on the goals of the classification procedures (data reduction and pattern recognition), the results of the within station and between station variability study, SWITCH, and the author's past experience with other data sets.

63. Sites were classified using the Bray-Curtis dissimilarity coefficient and the group average sorting strategy. The data were transformed using a square root transformation with no species reduction or standardization. Species were classified using similar techniques except that the rare species were eliminated from the data matrix and the species values were standardized (proportions) after a square root transformation.

64. The Bray-Curtis dissimilarity coefficient was chosen to classify both species and site groups because of its sensitivity to dominance in the site classification and abundance in the species classification.

\[
D_{12} = \frac{\sum_{j=1}^{n} |x_{1j} - x_{2j}|}{\sum_{1}^{n} (x_{1j} + x_{2j})}
\]

65. The transpose of the species-site matrix was used for species classification. The Bray-Curtis dissimilarity coefficient is constrained between 0 and 1 where 0 represents no dissimilarity between species or sites and 1 represents complete dissimilarity. The Bray-Curtis dissimilarity coefficient has been used by numerous benthic ecologists, either
66. A square root transformation for site classification was chosen to increase the importance of rarer species in the analysis without unduly reducing the importance of the dominant species. A square root transformation was also used in the species classification to reduce the effects of high values of individual species at certain sites.

67. Data used for species classification were standardized (species values at each site divided by sum of species values at all sites, i.e., proportions) after transformation because of the interest in similar patterns in the relative distribution of species. Without standardization the classification techniques would group species together based on overall abundanced (i.e., rare species together and abundant species together), which provides little ecological information. The data used for site classification were not standardized because the absolute differences in square root abundance values of species between different sites was considered an important criterion for site classification. Several other resemblance functions such as chord distance (Orloci, 1967), percentage similarity (Sanders, 1960), and the Canberra metric (Stephenson et al., 1972) are self-standardizing and were not used since absolute differences were considered to be important.

68. Both species-species and site-site resemblance matrices were clustered using a group-average sorting strategy. This strategy is an agglomerative, polythetic, hierarchical clustering strategy in which sites or species are successively joined based on the smallest mean dissimilarity value between individual stations or species or groups of stations or groups of species already joined. This strategy was chosen because it is monotonic (no reversals), space conserving, and little prone to misclassification (Lance and Williams, 1967).

69. Classification is a popular method of analysis for multivariate data in many different scientific fields (Anderberg, 1973). Recent reviews by Jardine and Sibson (1971), Sneath and Sokal (1973), Anderberg (1973), Orloci (1975), and Clifford and Stephenson (1975) indicate there
is no general agreement on which is the best method for use with any particular set of data. The classification techniques used in this report have been used successfully by other benthic ecologists in recent years (Field and MacFarlane, 1968; Field, 1969, 1970; Day et al., 1971; Stephenson, 1972; Stephenson et al., 1975; Richardson, 1976; and others).

70. Community structure parameters used to characterize sites included numerical density, biomass, dominant species, and diversity. The five replicates from each site were combined to form a station. The values of numerical density and biomass were multiplied by two to convert those values to individuals/m² and ash-free dry weight/m² for each site.

71. Dominant species were determined by a ranking procedure (Fager, 1957) where the most abundant species at a station was given a value 10, the next 9, and so on. The ranks were summed for each station considered and divided by the total number of stations summed. The resultant Biological Index (B.I.) included both frequency of occurrence and abundance in determining dominant species.

72. Diversity was calculated for each station from the Shannon and Weaver (1963) information function, the Brillouin (1962) information function, and Simpson's (1949) diversity function. H' is the Shannon-Weaver diversity value,

$$H' = \sum p_i \log \frac{1}{p_i}$$ \hspace{1cm} (2)

where p_i is the proportion of individuals belonging to the ith species. Logs to the base 2, e, and 10 were used. H is the Brillouin diversity value,

$$H = \frac{1}{N} \log \frac{1}{N} \frac{N_1}{N_1!N_2!...N_s!}$$ \hspace{1cm} (3)

where N_i is the total number of individuals of the ith species and N is the total number of individuals at the station. Logs to the base 2, e, and 10 were used. SD is the Simpson diversity value,
\[
SD = 1 - \Sigma p_i^2, \quad (4)
\]

where \(p_i \) is the proportion of individuals belonging to the \(i \)th species.

73. Lloyd and Ghelardi (1964) have shown that diversity values are sensitive to two components, the number of species in a sample (species richness) and the distribution of individuals among species (evenness). Species richness (SR) was estimated by the Margalef (1958) function,

\[
SR = \frac{(S-1)}{\ln(N)} \quad (5)
\]

where \(S \) is the number of species at the station and \(N \) is the total number of individuals at the station. Evenness was computed by two functions based on Pielou (1966). \(J' \) is the evenness value,

\[
J' = \frac{H'}{\log S} \quad (6)
\]

where \(H' \) is the Shannon-Weaver diversity value and \(S \) is the number of species. As long as the log base is the same as that used to calculate the Shannon-Weaver diversity value, the value of the base does not change the \(J' \) value. \(J \) is the evenness value.

\[
J = \frac{H}{\log S} \quad (7)
\]

where \(H \) is the Brillouin diversity value and \(S \) is the number of species.

74. Diversity indices have recently been criticized because of their lack of biological meaning, sample size dependence, and questionable mathematical properties (Hurlbert, 1971; Goodman, 1975). It has been shown that by successively pooling replicate samples diversity values reach an asymptotic value that represents the actual diversity of the collection being sampled (Sanders, 1968; Boesch, 1971; Pielou, 1975).

75. Most of the criticism of diversity indices by biologists relates to the lack of biological process implicit in their calculation,
their relationships to ecological theory, and the use of cybernetic or thermodynamic analogies related to information-based diversity values. The relationship between diversity and ecological theory, especially diversity-stability concepts, has been criticized by Goodman (1975). It is probably true that high species diversity does not beget community stability (either persistence or constancy) but the relationships between environmental stability, time, productivity, etc., and diversity still need investigation. As suggested by Hurlbert (1971) and others, a species' importance to community structure may not be related to its abundance, biomass or productivity (see Paine, 1966; Dayton et al., 1974). It is not intended to imply cybernetic or thermodynamic overtones on deriving diversity values, but rather that diversity values be considered as attempts to represent the number of species and the distribution of individuals among species in a given area in a quantitative manner. Biological process is not a necessary attribute of diversity indices when used to quantify these relationships.

Experimental Site G

76. The same methods of classification and community structure analysis that were used for baseline studies were applied to data collected from experimental site G. In addition several nonparametric tests were used to compare control stations and stations on which dredged material was disposed. These tests included the Kruskal-Wallis H test (Tate and Clelland, 1957), and the Mann-Whitney U test (Tate and Clelland, 1957) the Friedman two-way rank test (Hollander and Wolfe, 1973), and the Spearman rank correlation (Tate and Clelland, 1957).

Megafauna

77. The same method of classification that was used for baseline studies were applied to the beam trawl data. Since beam trawl sample sizes (distance covered over the bottom by the beam trawl) were different, proportional values of species abundances at each station were used to calculate Bray-Curtis dissimilarity values between all possible pairs of samples. Proportional values of species abundances over all stations were used to determine species groups (same as macrofaunal baseline).
Prior to analysis, species abundance values were transformed $[\log_{10}(x + 1)]$ for both station and species classification. This transformation was used because of the patchy distribution of megafaunal species and the suspect quantitative sampling characteristics of the metered beam trawl.
PART IV: RESULTS

General

78. A total of 2190 samples were obtained from the MCR study site, including 73 metered beam trawls for megafauna, 1657 0.1-m\(^2\) Smith-McIntyre grabs for macrofauna, 76 samples for meiofauna, five box cores for macrofauna, 369 samples for sediment, and 10 miscellaneous samples. This report includes the results of 1359 0.1-m\(^2\) Smith-McIntyre grabs for macrofauna and 67 metered beam trawls for megafauna. Although meiofaunal results were included in the annual interim report, meiofaunal work was later excluded from the contract by mutual agreement between the authors and the Corps of Engineers. The results from the 0.1-m\(^2\) box core samples are not included in this report because weather conditions and time limitations at sea prevented any systematic use of that sampling gear. The sediment samples were sent to the University of Washington. The results of the sediment investigations were reported to the Corps of Engineers by Sternberg et al. (1977).

79. A total of 339,753 individuals were sorted and identified from the 1359 0.1-m\(^2\) Smith McIntyre grab samples for a mean of 250 individuals per sample. The 339,753 individuals were separated into 425 taxa, most of which were identified to the species level.

80. Three species lists are presented in Appendix CII. The species are arranged in phylogentic and alphabetic order in the first two lists and by species code in the third list. Megafaunal species found in the beam trawl samples are also included.

81. Appendix CIII includes the values of diversity, the number of species, individuals/m\(^2\), and biomass values (grams ash-free dry weight/m\(^2\)) for each station. The contents of Appendix CIII is included under the appropriate sections in the results and in the discussion.

82. A total of 258,501 invertebrates were collected in the 67 metered beam trawl samples for a mean of 3858 individuals per sample. Of the 141 species identified from the beam trawl samples, only 49 had
the size range and behavior patterns to be adequately sampled and were included in the subsequent analysis.

83. The remainder of the results are divided into six sections. The first section presents the results of the pilot survey followed by the within station and between station variability, the areal baseline, the seasonal baseline, and the study of experimental site G. A macrofauna station may be included in more than one section. The final section includes the results of the megafaunal survey.

Pilot Survey

84. A total of 18,976 individuals were sorted from the forty-six 0.1-m² Smith-McIntyre grab samples that comprised the pilot survey. The polychaetes, which accounted for 28.3 percent of the total number of individuals were not identified; therefore, no extensive analyses were performed on the pilot survey data. Two sampling grids were employed in the pilot survey.

85. The first grid samples, stations 1-25 (Figure C4), were used to investigate patterns of distribution of assemblages in the MCR disposal site region. The density of macrofauna ranged from 310 to 18,170 individuals/m². The densities increased from 310 to 1380 individuals/m² at the inshore sandy stations to 2090 to 4900 individuals/m² at the offshore stations that contained greater amounts of silt and clay. Stations 22 and 24 had the highest density of macrofauna, with 18,170 and 9280 individuals/m², respectively. *Diastylopsis dawsoni*, a cumacean, comprised 84.8 percent of the total number of individuals at station 22, accounting for the high densities at that station. *Siliqua patula*, the razor clam, was also abundant at station 22, accounting for 10 percent of the individuals. Station 24 was dominated by the bivalve *Axinopsida serricata* (31 percent of the individuals) and polychaetes (50 percent of the individuals). The dominant taxa at the offshore stations (62-88 m) were the bivalves *Acila castrensis*, *Axinopsida serricata*, and *Nucula tenuis*. The dominant taxa at the inshore stations (18-45 m) were the amphipods *Echaustorius sencillus* and *Ampelisca macrocephala.*
86. The second grid samples, stations 26-46 (Figure C5), were used to investigate the benthic assemblages found at disposal site B. The density of macrofauna ranged from 210 to 54,430 individuals/m². Nine stations (27, 28, 29, 31, 33, 34, 37, 38, and 39) were dominated by the cumacean *Diastylopsis dawsoni*, which ranged from 510 to 52,400 individuals/m². The total density at those nine stations ranged from 1580 to 54,430 individuals/m². Station 42 also had a high density value (7,610 individuals/m²) and was dominated by polychaetes (95.7 percent of individuals). The remaining 11 stations had lower density of macrofauna (range 210 to 2900, mean 937 individuals/m²). The dominant species near disposal site B included the cumacean *Diastylopsis dawsoni*, the gastropoda *Olivella pycna*, the bivalve *Axinopsida serricata*, the holothurian *Paracaudina chilensis*, and the gastropoda *Olivella baetica*.

Within Station and Between Station Variability

87. Twenty replicate Smith-McIntyre grabs were obtained from one location (46° 11.5'N, 124° 06.5'W) near experimental site G. The depth of water was 29 m and the substrate was a well-sorted sand with a median diameter (Md ϕ) of 2.70 ϕ and a standard deviation (σ ϕ) of 0.39 ϕ.

88. The dominant species were the polychaete *Magelona sacculata*, the amphipoda *Eohaustorius sencillus*, and the polychaete *Spiophanes bombyx* (Table C4). Except for the polychaetes *Magelona sacculata* and *Thalenessa spinosa*, all of the ten most dominant species exhibited a contagious distribution among the twenty samples.

89. The mean Bray-Curtis dissimilarity value between all possible pairs of samples was 0.49 (190 pairs). This high value indicated that single replicates were not a good estimate of the relative proportion of individuals of dominant species in this low density area (11-71 individuals per sample). The contagious distribution among samples of most dominant species contributes to the high dissimilarity values. If the 20 replicates are divided into 4 stations (5 replicates per station, taken in order), the mean Bray-Curtis dissimilarity value is reduced to
<table>
<thead>
<tr>
<th>Species</th>
<th>Species Code</th>
<th>BI</th>
<th>N</th>
<th>N/m²</th>
<th>f(20)</th>
<th>$\frac{s^2}{x}$</th>
<th>I_g</th>
<th>$I_{g(p)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magelona sacculata</td>
<td>279</td>
<td>9.75</td>
<td>174</td>
<td>87</td>
<td>20</td>
<td>1.10</td>
<td>1.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>Eohaustorius sencillus</td>
<td>155</td>
<td>8.75</td>
<td>133</td>
<td>66.5</td>
<td>18</td>
<td>5.38</td>
<td>1.63</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Spiophanes bombyx</td>
<td>344</td>
<td>8.50</td>
<td>117</td>
<td>58.5</td>
<td>20</td>
<td>2.83</td>
<td>1.29</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Chaetozoa setosa</td>
<td>237</td>
<td>6.63</td>
<td>56</td>
<td>28</td>
<td>18</td>
<td>1.93</td>
<td>1.32</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Paraphoxus vigitegus</td>
<td>141</td>
<td>5.88</td>
<td>56</td>
<td>28</td>
<td>17</td>
<td>1.97</td>
<td>1.33</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Amphipodia periercta-urtica</td>
<td>425</td>
<td>4.37</td>
<td>45</td>
<td>22.5</td>
<td>16</td>
<td>2.05</td>
<td>1.45</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Nemertea sp. #7</td>
<td>471</td>
<td>2.50</td>
<td>29</td>
<td>14.5</td>
<td>14</td>
<td>1.49</td>
<td>1.47</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Olivella baetica</td>
<td>7</td>
<td>2.37</td>
<td>31</td>
<td>15.5</td>
<td>14</td>
<td>3.01</td>
<td>2.28</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Nephtys caecoides</td>
<td>302</td>
<td>1.75</td>
<td>21</td>
<td>10.5</td>
<td>11</td>
<td>1.44</td>
<td>1.42</td>
<td>< 0.10</td>
</tr>
<tr>
<td>Thalenessa spinosa</td>
<td>354</td>
<td>1.63</td>
<td>17</td>
<td>8.5</td>
<td>11</td>
<td>1.01</td>
<td>1.03</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), total number of individuals (N), individuals/m² (N/m²) frequency of occurrence in 20 samples [f(20)], index of dispersion (s^2/x), Morista's index of dispersion (I_g), and the significance of departure from randomness for Morista's index of dispersion [$I_{g(p)}$] (Elliott, 1971).
0.25 (Figure C25). The mean dissimilarity value based on presence and absence data (Czekanowski dissimilarity) was 0.26.

90. Previous studies (Richardson, 1976) have shown that a Bray-Curtis dissimilarity value of 0.25 represents a high degree of similarity between stations; therefore five replicate samples per station was considered an adequate estimate of the number of individuals of dominant species per station for this area.

91. Within station variability was also examined for the 100 station areal baseline. Of the 100 stations, 69 had mean between replicate dissimilarity lower or the same as the 20 replicate series; 21 stations had mean between replicate dissimilarity of 0.50 to 0.60; and 10 stations had mean between replicate dissimilarity higher than 0.60. Five replicates per station therefore appears to be adequate for most stations in the MCR study site region for classification of site groups.

92. The estimates of community structure values at this location were calculated from the summed species values of all replicates combined. Community structure parameters calculated from the twenty replicate samples, the four stations (five replicates), and all replicates combined are compared in Table C5.

93. The number of individuals/m² and biomass values are not sample-size dependent. The range of values of individuals/m² and biomass were considerable for the twenty replicate samples and were much reduced for the four stations. The number of species is sample-size dependent. A larger sample or more replicates will increase the number of species. Single replicates on the average captured only 30 percent of the total number of species collected in 20 replicates, and 5 replicates captured 67 percent of the total number of species. Neither single samples or stations (five replicates combined) are reliable estimates of the number of species at this location.

94. Diversity (H'), species richness (SR) and evenness (J') are also sample-size dependent. Diversity and species richness values increase with the number of individuals captured (more replicates) until the values approach the asymptotic values that represent the diversity
Figure C25. Dissimilarity Values Between Four Replicate Stations (46°11.5'N, 124°06.5'W)
Table C5

Comparison of Values of Community Structure Parameters
for Replicates, Stations (Five Replicates Combined), and
for all Replicates Combined (46° 11.5'N, 124° 06.5'W).

<table>
<thead>
<tr>
<th>Parameter*</th>
<th>Replicates Mean</th>
<th>Replicates Range</th>
<th>Replicates Mean</th>
<th>Replicates Range</th>
<th>20 Summed Replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td># Species</td>
<td>17.8</td>
<td>9-26</td>
<td>39.5</td>
<td>38-48</td>
<td>59.0</td>
</tr>
<tr>
<td>Individual/m²</td>
<td>462.0</td>
<td>110-710</td>
<td>462.0</td>
<td>366-520</td>
<td>462.0</td>
</tr>
<tr>
<td>H' (diversity)</td>
<td>3.51</td>
<td>2.37-4.12</td>
<td>4.17</td>
<td>4.13-4.32</td>
<td>4.38</td>
</tr>
<tr>
<td>SR (Species Richness)</td>
<td>4.40</td>
<td>2.67-5.91</td>
<td>7.08</td>
<td>6.07-8.45</td>
<td>8.49</td>
</tr>
<tr>
<td>J' (evenness)</td>
<td>0.86</td>
<td>0.69-0.97</td>
<td>0.79</td>
<td>0.77-0.88</td>
<td>0.74</td>
</tr>
<tr>
<td>Biomass/m²</td>
<td>1.69</td>
<td>0.17-6.28</td>
<td>1.69</td>
<td>1.40-1.93</td>
<td>1.69</td>
</tr>
</tbody>
</table>

* See text for definition of community structure parameters.
or species richness in a fully censused population. The mean diversity for stations was 95 percent of the diversity for twenty replicates combined while the mean diversity for individual replicates was 80 percent of the combined diversity. The range of diversity values calculated from stations was also much reduced when compared to the range of diversity calculated from replicates. Species richness values calculated from stations were 83 percent of the species richness value for all replicates combined, compared to 53 percent for the replicates. The evenness values decrease with the number of individuals captured (more replicates) until the asymptotic value of a fully censused population is reached. The mean evenness values for stations was 106 percent of the evenness value for all replicates combined while evenness values for the twenty replicate samples was 116 percent of the evenness value for all replicates combined. The range of evenness values was also greatly reduced for the four stations when compared to the twenty replicates.

95. The number of replicates necessary to estimate community structure parameters is dependent on the variability between replicates and the total number of individuals captured. In the areal baseline only 10 percent of the stations had much higher between replicate dissimilarity than the replicates chosen for the within station variability study and only 28 percent of the stations had lower total numbers of individuals captured. Therefore, five replicate samples per station are probably adequate to calculate community structure values for most of the stations in the areal baseline.

Areal Baseline

96. The areal baseline consisted of 500 grabs obtained from 100 stations on cruises C7412B and C7501D. Twenty-four grab samples were excluded from the analyses because they were either collected poorly or were not sorted due to time constraints. The remaining 476 grab samples yielded 99,484 individuals that were identified to the lowest taxonomic level possible.
97. The numerically most abundant species collected from the areal baseline was the cumacean Diastylopsis dawsoni (20,441 individuals). Other numerically abundant species included the polychaetes Heteromastus filobranchus (5979 individuals), Lumbrineris luti (4825), Myriochele oculata (3367), Spiophanes berkeleyorum (2143), Maldane sarsi (2133), and Mediomastus californiensis (2070); the bivalves Axinopsida serricata (15,993) and Acila castrensis (4292); and the gastropoda Olivella pycna (2667). Values of community structure parameters are found in Appendix CIII.

Assemblages and station groups

98. The 100 stations were clustered into five assemblages (Figure C26). The assemblages were defined as groups of stations that fused at between 0.51 and 0.60 Bray-Curtis dissimilarity units. The assemblages were divided into station groups that fused at between 0.36 and 0.49 Bray-Curtis dissimilarity units. The topographic distribution of the benthic assemblages and station groups are shown in Figures C27 and C28. The following paragraphs describe each assemblage and station group in terms of dominant species, community structure, and sediment characteristics. A more complete description of sediments found off the mouth of the Columbia was given by Sternberg et al. (1977).

99. Assemblage A. Assemblage A consisted of 24 stations located in deep water (60-97 m) off the mouth of the Columbia River. Assemblage A was divided into four station groups. Station group A₁ was the deepest (75-97 m) and was found along the entire western part of the study area; station group A₂ was at medium depth (60-68 m) in the central and northern part of the study area; station group A₃ consisted of two stations (70 m) in the southern portion of the study area; and station group A₄ was the shallowest (47-51 m) group.

100. The sediment had greater than 10 percent silt and clay at all but 4 stations. The percentage of clay was greater than 5 percent at all but five of the stations. The percentage of clay and silt increased toward the northernmost stations.

101. The diversity (H') values ranged from 3.45 at station 150 to 5.24 at station 144, except for one lower value at station 53 (2.34).
Figure C26. Dendrogram of Dissimilarity Between Macrofaunal Stations-Areal Baseline
Figure C27. Location of Benthic Assemblages and Station Groups in Areal Baseline I
Figure C28. Location of Benthic Assemblages and Station Group in Areal Baseline II
The species richness (SR) values ranged from 8.11 at station 100 to 16.94 at station 149 (station 53 = 7.57). The evenness (J') values ranged from 0.52 at station 150 to 0.78 at station 47 (station 53 = 0.40). In general, the diversity, species richness, and evenness values increased with depth.

102. The density of macrofauna ranged from 2,034 individuals/m² at station 48 to 11,918 individuals/m² at station 147. The biomass values ranged from 5.15 g ash-free dry weight/m² at station 48 to 42.08 g ash-free dry weight/m² at station 99. Except for two southern stations, all biomass values were greater than 9.0 g ash-free dry weight/m².

103. The dominant species in assemblage A was the pelecypoda *Axinopsida serricata*, which occurred at all 24 stations with a mean density of 1626 individuals/m² (Table C6). Other dominant species included the polychaetes *Lumbrineris luti* and *Myriochele oculata*, and the pelecypoda *Acila castrensis*.

104. Station Group A₁. Station group A₁ consisted of 10 stations located in 75-97 m of water. These stations were the deepest stations sampled in this study. The 10 stations were joined at 0.36 Bray-Curtis units and joined station groups A₂ and A₃ at 0.53 Bray-Curtis units.

105. All sediment samples contained moderate amounts of silt and clay, ranging from 17.0 percent at station 47 to 39.1 percent at station 149. The silt increased northward from 9.0 percent at station 47 to 25.6 percent at station 149. All grab samples contained over 100 cc of wood chip material collected on the 1.00 mm screen. The median phi-size ranged from 2.68 ø at station 67 to 3.15 ø at station 149.

106. The diversity (H') values ranged from 4.54 at station 54 to 5.24 at station 144. Species richness (SR) values ranged from 13.49 at station 97 to 16.94 at station 144. The evenness (J') values ranged from 0.65 at station 54 to 0.78 at station 47.

107. The density of macrofauna ranged from 3223 individuals/m² at station 47 to 7533 individuals/m² at station 148 with a slight increase northward. The biomass ranged from 5.78 g ash-free dry weight/m² at station 47 to 17.57 g ash-free dry weight/m² at station 54. Polychaetes and pelecypods accounted for most of the biomass.
Table 6

Dominant Species in Assemblage A.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(24)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>9.16</td>
<td>24</td>
<td>1626</td>
</tr>
<tr>
<td>275</td>
<td>Lumbrineris luti</td>
<td>5.54</td>
<td>24</td>
<td>543</td>
</tr>
<tr>
<td>300</td>
<td>Myriochele oculata</td>
<td>5.00</td>
<td>24</td>
<td>392</td>
</tr>
<tr>
<td>19</td>
<td>Acila castrensis</td>
<td>3.83</td>
<td>23</td>
<td>440</td>
</tr>
<tr>
<td>282</td>
<td>Maldane sarsi</td>
<td>3.66</td>
<td>11</td>
<td>222</td>
</tr>
<tr>
<td>264</td>
<td>Heteromastus filobranchus</td>
<td>3.42</td>
<td>22</td>
<td>526</td>
</tr>
<tr>
<td>352</td>
<td>Spirochaetopterus costarum</td>
<td>3.04</td>
<td>21</td>
<td>154</td>
</tr>
<tr>
<td>294</td>
<td>Mediomastus californiensis</td>
<td>2.58</td>
<td>24</td>
<td>208</td>
</tr>
<tr>
<td>278</td>
<td>Magelona longicornis</td>
<td>2.50</td>
<td>20</td>
<td>116</td>
</tr>
<tr>
<td>345</td>
<td>Spiophanes berkeleyorum</td>
<td>2.42</td>
<td>24</td>
<td>258</td>
</tr>
</tbody>
</table>

* Includes the Biological Index (BI), frequency of occurrence [f(24)], and mean number of individuals/m² (N/m²) for the 10 most dominant species.
108. Dominant species were the polychaete *Maldane sarsi* and the pelecypoda *Axinospida serricata*. The polychaetes *Lumbrineris luti*, *Spiochaetopterus costarum*, *Magelona longicornis*, and *Myriochele oculata* also had biological index values greater than 5 (Table C7).

109. Station Group A2. Station group A2 consisted of eight stations located in 60-68 m of water off the mouth of the Columbia River. The eight stations were joined at 0.34 Bray-Curtis units.

110. All sediment samples contained moderate percentages of silt and clay. The silt and clay increased northward from 7.14 percent at station 56 to 33.34 percent at station 147. No sediment sample was analyzed from station 150. All grab samples contained over 100 cc of wood chip material collected on the 1.00 mm screen. The median phi-size increased northward from 2.64 ϕ at station 56 to 3.27 ϕ at station 147.

111. The diversity (H') values ranged from 3.45 at station 150 to 3.92 at station 99. The species richness (SR) values ranged from 9.17 at station 96 to 12.39 at station 150 with a tendency to increase northward. The evenness (J') values ranged from 0.52 to 0.61.

112. The density of macrofauna increased northward from 5004 individuals/m2 at station 56 to 11,918 individuals/m2 at station 147 and 11,067 individuals/m2 at station 150. The biomass ranged from 10.56 g ash-free dry weight/m2 at station 150 to 42.08 g ash-free dry weight/m2 at station 99. Pelecypods, especially *Acila castrensisi*, accounted for the high biomass at southern stations.

113. Dominant species included the pelecypod *Axinospida serricata* and the polychaetes *Lumbrineris luti* and *Myriochele oculata*. Also dominant were the pelecypoda *Acila castrensisi* and the polychaetes *Spiophanes berkeleyorum* and *Heteromastus filobranchus* (Table C8).

114. Station Group A3. Station group A3 consisted of two stations (70 m) in the southern part of the study area. The two stations joined at 0.37 Bray-Curtis units.

115. The sediment at station 48 was 5.0 percent silt and clay, and the sediment at station 53 was 3.1 percent. The median phi-size was 2.93 ϕ at station 48 and 2.75 ϕ at station 53.
Table C7

Dominant Species at Station Group A1.*

<table>
<thead>
<tr>
<th>Code</th>
<th>Species</th>
<th>BI</th>
<th>f(10)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>282</td>
<td>Maldane sarsi</td>
<td>9.0</td>
<td>10</td>
<td>533</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>9.0</td>
<td>10</td>
<td>692</td>
</tr>
<tr>
<td>275</td>
<td>Lumbrineris luti</td>
<td>6.5</td>
<td>10</td>
<td>398</td>
</tr>
<tr>
<td>352</td>
<td>Spiochaetopterus costarum</td>
<td>6.4</td>
<td>10</td>
<td>284</td>
</tr>
<tr>
<td>278</td>
<td>Magelona longicornis</td>
<td>6.0</td>
<td>10</td>
<td>271</td>
</tr>
<tr>
<td>300</td>
<td>Myriochele oculata</td>
<td>4.3</td>
<td>10</td>
<td>234</td>
</tr>
<tr>
<td>19</td>
<td>Acila castrensis</td>
<td>1.9</td>
<td>10</td>
<td>243</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>1.7</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>242</td>
<td>Decamastus gracilis</td>
<td>1.6</td>
<td>10</td>
<td>124</td>
</tr>
<tr>
<td>97</td>
<td>Diastyloptis dawsoni</td>
<td>1.5</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td>33</td>
<td>Macoma elimata</td>
<td>1.4</td>
<td>10</td>
<td>137</td>
</tr>
<tr>
<td>294</td>
<td>Mediomastus californiensis</td>
<td>1.4</td>
<td>10</td>
<td>139</td>
</tr>
<tr>
<td>312</td>
<td>Notomastus hemipodus</td>
<td>1.0</td>
<td>10</td>
<td>63</td>
</tr>
</tbody>
</table>

* Includes the Biological Index (BI), frequency of occurrence [f(10)], and mean number of individuals/m² (N/m²) for the 13 most dominant species.
Table C8

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(8)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>10.00</td>
<td>8</td>
<td>2790</td>
</tr>
<tr>
<td>275</td>
<td>Lumbrineris luti</td>
<td>8.12</td>
<td>8</td>
<td>1085</td>
</tr>
<tr>
<td>300</td>
<td>Myriochele oculata</td>
<td>7.62</td>
<td>8</td>
<td>820</td>
</tr>
<tr>
<td>19</td>
<td>Acila castrensis</td>
<td>6.00</td>
<td>8</td>
<td>555</td>
</tr>
<tr>
<td>345</td>
<td>Spiophanes berkeleyorum</td>
<td>5.00</td>
<td>8</td>
<td>371</td>
</tr>
<tr>
<td>264</td>
<td>Heteromastus filobranchus</td>
<td>5.00</td>
<td>8</td>
<td>320</td>
</tr>
<tr>
<td>294</td>
<td>Mediomastus californiensis</td>
<td>3.25</td>
<td>8</td>
<td>260</td>
</tr>
<tr>
<td>20</td>
<td>Nucula tenuis</td>
<td>2.37</td>
<td>8</td>
<td>166</td>
</tr>
<tr>
<td>242</td>
<td>Decamastus gracilis</td>
<td>2.25</td>
<td>8</td>
<td>159</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>1.50</td>
<td>8</td>
<td>79</td>
</tr>
</tbody>
</table>

* Includes the Biological Index (BI), frequency of occurrence [f(8)], and mean number of individuals/m² (N/m²) for the 10 most dominant species.
116. The diversity (H') value at station 48 was 4.73; the species richness (SR) value was 12.00; and the evenness (J') value was 0.74. Station 53 had lower diversity (H' = 2.34), species richness (SR = 7.57) and evenness (J' = 0.40) values.

117. The density of macrofauna was 2034 individuals/m² at station 48 and 2912 individuals/m² at station 53. The biomass value was higher at station 53 (23.41 g ash-free dry weight/m²) than at station 48 (5.15 g ash-free dry weight/m²).

118. The higher biomass value at station 53 is due to the higher density of the pelecypoda, Acila castrensis (1926 individuals/m² at station 53; 426 individuals/m² at station 47). The high density of Acila castrensis at station 53 also decreased the evenness component of diversity, thus reducing the diversity at that station.

119. The dominant species were the pelecypods Acila castrensis and Nucula tenuis and the polychaete Myriochele oculata. The polychaetes Haploscoloplos elongatus and Spiochaetopterus costarum, the ophiuroid Amphiodia periercta-urtica, and the pelecypoda Axinospida serricata also had BI values greater than 5 (Table C9).

120. Station Group A₄. Station group A₄ consisted of 4 stations located in 47 to 51 m of water directly off the mouth of the Columbia River. The four stations were joined at 0.36 Bray-Curtis units and joined with station group A₁ at 0.47 Bray-Curtis units.

121. The three northern stations contained moderate amounts of silt and clay ranging from 13.2 percent at station 65 to 42.8 percent at station 95. Station 70, the southernmost station, contained only 2.5 percent silt and clay. All grab samples contained over 100 cc of wood chip material collected on the 1.00 mm screen. The median phi-size increased northward from 2.64 φ at station 70 to 3.30 φ at station 100.

122. The diversity (H') values ranged from 3.33 at station 65 to 3.70 at station 95. Species richness (SR) values ranged from 8.11 at station 100 to 8.72 at station 70. The evenness (J') values ranged from 0.53 at station 65 to 0.61 at stations 95 and 100.

123. The density of macrofauna ranged from 4730 at station 100 to 13,523 individuals/m² at station 65. The density values at the two
Table C9

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(2)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Acila castrensis</td>
<td>10.0</td>
<td>2</td>
<td>1176</td>
</tr>
<tr>
<td>300</td>
<td>Myriochele oculata</td>
<td>8.0</td>
<td>2</td>
<td>133</td>
</tr>
<tr>
<td>20</td>
<td>Nucula tenuis</td>
<td>8.0</td>
<td>2</td>
<td>129</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>5.5</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>5.5</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>5.5</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>352</td>
<td>Spiochaetopterus costarum</td>
<td>4.0</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>193</td>
<td>Euphilomedes carcharodonta</td>
<td>2.0</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>67</td>
<td>Dentallidae spp.</td>
<td>2.0</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Odostomia sp. #1</td>
<td>1.5</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>275</td>
<td>Lumbrineris luti</td>
<td>1.5</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>331</td>
<td>Polycirrus spp.</td>
<td>1.0</td>
<td>2</td>
<td>34</td>
</tr>
</tbody>
</table>

* Includes the Biological Index (BI), frequency of occurrence [f(2)] and mean number of individuals/m² (N/m²) of the 12 most dominant species.
southern stations were higher than at the two northern stations. Biomass values were also higher at the two southern stations (37.88-49.72 g ash-free dry weight/m²) and than at the two northern stations (19.21-19.64 g ash-free dry weight/m²). Polychaetes, pelecypods, and holothuroids were primarily responsible for the very high biomass values.

124. Dominant species at station group A4 included the pelecypod Axinopsida serricata and the polychaete Heteromastus filobranchus. The polychaetes Mediomastus californiensis, Pholoe minuta, and Spiophanes berkeleyorum; the cumacean Diastylopsis dawsoni; and the ophiuroid Amphiodia periercta-urtica were also dominant (Table C10).

125. Assemblage B. Assemblage B consisted of 17 stations located in the northcentral part of the study area in moderate depths (29-44 m). Assemblage B was divided into two station groups: station group B1 in shallower water (29-33 m) and station group B2 in deeper water (37-44 m).

126. The sediment at all but three of the stations contained greater than 10 percent silt with a general increase in percentage silt northward (range 0.6-58.4 percent). The percentage of clay ranged from 1.0 to 5.0 percent. The median phi-size ranged from 2.15 ø at station 76 to 4.23 ø at station 146 with an increase in median phi-size northward.

127. Diversity (H') values ranged from 0.59 at station 103 to 4.34 at station 146. Species richness (SR) values ranged from 3.59 at station 103 to 7.42 at station 146. Evenness (J') values ranged from 0.12 at station 103 to 0.79 at station 151.

128. The density of macrofauna ranged from 944 individuals/m² at station 152 to 6962 individuals/m² at station 137. The biomass ranged from 1.21 to 6.27 g ash-free dry weight/m² except for the high values at stations 90 (10.9 g ash-free dry weight/m²), and 89 (36.0 g ash-free dry weight/m²).

129. The diversity (H'), species richness (SR), and evenness (J') values increased offshore and northward. Biomass values and individuals/m² were highest in the northwestern part of disposal site B at stations 88, 89, 90, 101, 103, 126, 136, and 137.
Table C10

Dominant Species at Station Group A₄.

<table>
<thead>
<tr>
<th>Code</th>
<th>Species</th>
<th>BI</th>
<th>f(4)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>9.75</td>
<td>4</td>
<td>2416</td>
</tr>
<tr>
<td>264</td>
<td>Heteromastus filobranchus</td>
<td>9.25</td>
<td>4</td>
<td>2317</td>
</tr>
<tr>
<td>294</td>
<td>Mediomastus californiensis</td>
<td>5.50</td>
<td>4</td>
<td>375</td>
</tr>
<tr>
<td>322</td>
<td>Pholoe minuta</td>
<td>4.75</td>
<td>4</td>
<td>243</td>
</tr>
<tr>
<td>345</td>
<td>Spiophanes berkeleyorum</td>
<td>4.50</td>
<td>4</td>
<td>433</td>
</tr>
<tr>
<td>97</td>
<td>Diastylophis dawsoni</td>
<td>4.25</td>
<td>4</td>
<td>236</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>4.00</td>
<td>4</td>
<td>170</td>
</tr>
<tr>
<td>243</td>
<td>Trochochaeta franciscanum</td>
<td>2.00</td>
<td>3</td>
<td>222</td>
</tr>
<tr>
<td>31</td>
<td>Macoma nasuta</td>
<td>2.00</td>
<td>4</td>
<td>124</td>
</tr>
<tr>
<td>456</td>
<td>Nemertea sp. #4</td>
<td>1.75</td>
<td>4</td>
<td>112</td>
</tr>
<tr>
<td>320</td>
<td>Pectinaria californiensis</td>
<td>1.75</td>
<td>4</td>
<td>223</td>
</tr>
<tr>
<td>78</td>
<td>Paracaudina chilensis</td>
<td>1.75</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>19</td>
<td>Acila castrensis</td>
<td>1.25</td>
<td>4</td>
<td>90</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence \([f(4)]\), and mean number of individuals/m² \((N/m²) \) of the 13 most dominant species.
130. The dominant species in Assemblage B was the cumacean \textit{Diastylopsis dawsoni}. Other dominant species included the holothuroid \textit{Paracaudina chilensis}, the polychaete \textit{Haploscoloplos elongatus}, and the pelecypoda \textit{Tellina modesta} (Table C11).

131.

Station Group B1. Station group B1 consisted of seven stations located in 29-30 m of water. The southernmost station (127) was located in the northern part of disposal site B, and the remaining six stations were located north of station 127 along the 30-m depth contour. The seven stations were joined at 0.48 Bray-Curtis units.

132. The percentage silt ranged from 9.4 percent at station 103 to 27.5 percent at station 145. The percentage clay ranged from 1.2 percent to 1.7 percent. The median phi-size ranged from 3.16 ϕ at station 127 to 3.66 ϕ at station 145.

133. The diversity (H') values ranged from 0.59 at station 103 to 4.10 at station 145. Species richness (SR) values ranged from 3.59 at station 103 to 7.11 at station 145. Evenness (J') values ranged from 0.12 at station 103 to 0.74 at station 145.

134. The density of macrofauna ranged from 944 individuals/m2 at station 152 to 4862 individuals/m2 at station 103. The biomass values ranged from 1.21 g ash-free dry weight/m2 at station 152 to 3.41 g ash-free dry weight/m2 at station 101.

135. Station group B1 can be divided into two subgroups based on the abundance of the cumacean \textit{Diastylopsis dawsoni}. Stations 101, 103, 104, and 136 had high density values of \textit{Diastylopsis dawsoni} (2140-4534 individuals/m2). The diversity (H') values were low (0.59-1.89); the evenness (J') values were low (0.12-0.36); and the density (2944-4862 individuals/m2) and biomass values (2.51-3.41 g ash-free dry weight/m2) were high. At stations 127, 145, and 152 the abundance of \textit{Diastylopsis dawsoni} was lower (330-518 individuals/m2); the diversity (H') values were higher (2.75-4.10); the evenness (J') values were higher (0.56-0.74); the density values were lower (944-1122 individuals/m2); and the biomass values were lower (1.21-1.68 g ash-free dry weight/m2).

136. The cumacean \textit{Diastylopsis dawsoni} was the dominant species accounting for 79 percent of all the individuals found at station group
<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(17)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>7.26</td>
<td>17</td>
<td>1278</td>
</tr>
<tr>
<td>78</td>
<td>Paracaudina chilensis</td>
<td>4.74</td>
<td>16</td>
<td>92</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>4.44</td>
<td>17</td>
<td>69</td>
</tr>
<tr>
<td>36</td>
<td>Tellina modesta</td>
<td>4.00</td>
<td>17</td>
<td>53</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>3.44</td>
<td>17</td>
<td>56</td>
</tr>
<tr>
<td>316</td>
<td>Owenia collaris</td>
<td>3.41</td>
<td>15</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>3.02</td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td>264</td>
<td>Heteromastus filobranchus</td>
<td>2.76</td>
<td>8</td>
<td>146</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>2.58</td>
<td>16</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>2.12</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>143</td>
<td>Paraphoxus fatigans</td>
<td>1.94</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>322</td>
<td>Pholoe minuta</td>
<td>1.62</td>
<td>16</td>
<td>36</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence [f(17)], and mean number of individuals/m² (N/m²) of the 12 most dominant species.
B₁ (Table C12). Other dominant species included the pelecypoda Tellina modesta, the polychaetes Owenia collaris and Haploscoloplos elongatus, the gastropoda Olivella pycna, and the ophiuroid Amphiodia perierctica.

137. **Station Group B₂**. Station group B₂ consisted of 10 stations located in 37-44 m of water along the seaward edge of disposal site B and north of disposal site B along the 40-m contour. The 10 stations were joined at 0.48 Bray-Curtis units and joined station group B₁ at 0.57 Bray-Curtis units.

138. The percentage silt in sediments increased northward from less than 1 percent at station 75 to 58 percent at station 146. Samples from stations 88, 89, 90 and 137 contained over 100 cc of wood chip material retained on the 1.00 mm screen. The median phi-size increased northward from 2.15 Ø at station 76 to 4.23 Ø at station 146.

139. Diastylopsis dawsoni accounted for 75 percent of the individuals at station 137, which lowered the diversity (H') value (1.77) and evenness (J') value (0.32). If station 137 were excluded, diversity (H') values ranged from 2.89 at station 88 to 4.37 at station 151. Species richness (SR) values ranged from 5.60 to 8.35. Evenness (J') values ranged from 0.53 at station 89 to 0.79 at station 151.

140. The density values ranged from 734 individuals/m² at station 76 to 2,618 individuals/m² at station 90. Biomass values ranged from 1.66 g ash-free dry weight/m² at station 151 to 36.03 g ash-free dry weight/m² at station 89. The major contributor to the high biomass value at station 89 was the holothuroid Paracaudina chilensis.

141. The stations located in central part of station group B₂ (88, 89, and 90) had the lowest diversity and evenness values and highest density and biomass values.

142. The dominant species at station group B₂ were the holothuroid Paracaudina chilensis, the cumacean Diastylopsis dawsoni, the polychaetes Haploscoloplos elongatus and Heteromastus filobranchus, and the pelecypoda Axinopsida serricata (Table C13).
Table C12

Dominant Species at Station Group B₁.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species Name</th>
<th>BI</th>
<th>f(7)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>10.00</td>
<td>7</td>
<td>2088</td>
</tr>
<tr>
<td>36</td>
<td>Tellina modesta</td>
<td>6.64</td>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>316</td>
<td>Owenia collaris</td>
<td>5.29</td>
<td>6</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>4.29</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>3.21</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>3.21</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>343</td>
<td>Spio filicornis</td>
<td>2.36</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>78</td>
<td>Paracaudina chilensis</td>
<td>2.36</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>141</td>
<td>Paraphoxus vigitengus</td>
<td>2.14</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>137</td>
<td>Paraphoxus epistomus</td>
<td>2.14</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>2.00</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>1.93</td>
<td>2</td>
<td>19</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence [f(7)], and mean number of individuals/m² (N/m²) of the 12 most dominant species.
Table C13

Dominant Species at Station Group B2.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(10)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Paracaudinia chilensis</td>
<td>6.40</td>
<td>10</td>
<td>142</td>
</tr>
<tr>
<td>97</td>
<td>Diastylophis dawsoni</td>
<td>5.35</td>
<td>10</td>
<td>712</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>5.30</td>
<td>10</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsisa serricata</td>
<td>4.85</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>264</td>
<td>Heteromastus filobranchus</td>
<td>4.70</td>
<td>7</td>
<td>248</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>4.40</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>3.60</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>143</td>
<td>Paraphoxus fatigans</td>
<td>2.90</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>322</td>
<td>Pholoe minuta</td>
<td>2.35</td>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>36</td>
<td>Tellina modesta</td>
<td>2.15</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>316</td>
<td>Owenia collaris</td>
<td>2.10</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>198</td>
<td>Tecticeps convexus</td>
<td>1.45</td>
<td>10</td>
<td>36</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence [f(10)], and mean number of individuals/m² (N/m²) of the 12 most dominant species.
143. **Assemblage C.** Assemblage C consisted of 15 stations located in shallow water (18-47 m) in the southern part of the study area. The 15 stations were joined at 0.51 Bray-Curtis units. Two subgroups, the offshore stations (49, 52, 57, and 120) (40-47 m) and the inshore stations (18-29 m), joined at 0.36 and 0.35 Bray-Curtis units, respectively.

144. The percentage silt and clay was less than 2.5 percent at all stations. The median phi-size ranged from 2.65 to 3.14 ϕ with a slight decrease offshore.

145. The diversity values (H') ranged from 3.33 at station 123 to 4.51 at station 120 with a slight increase in diversity offshore. The species richness (SR) values ranged from 4.55 at station 61 to 8.56 at station 49 also with a slight increase offshore. Evenness (J') values ranged from 0.69 to 0.82.

146. The density of macrofauna was low at all stations and ranged from 334 individuals/m2 at station 123 to 888 individuals/m2 at station 49. Biomass values were also low and ranged from 0.67 g ash-free dry weight/m2 at station 50 to 2.11 g ash-free dry weight/m2 at station 51.

147. Dominant species were the polychaete *Spiophanes bombyx* and the amphipoda *Eohaustorius sencillus*. Also dominant were the polychaetes *Magelona sacculata* and *Chaetozone setosa* along with the ophiuroid *Amphiodia perierctica-urtica* (Table C14).

148. **Assemblage D.** Assemblage D consisted of 38 stations located in shallow water (13-40 m) off the mouth of the Columbia River. Assemblage D was divided into 3 station groups: station group D_1 was located in the southern portion of assemblage D; station group D_2 was located directly off the mouth of the Columbia River in shallow water (13-27 m); and station group D_3 was located in deeper water (26-40 m) near disposal site B. Station 78 was not placed in a station group but was included in assemblage D.

149. The sediment at all stations was sandy (>94 percent sand) with a maximum of 5.7 percent silt and clay at station 92. The sediment at most stations was greater than 98 percent sand. Median phi-size ranged from 1.96 ϕ to 3.09 ϕ.

93
Table C14

Dominant Species in Assemblage C₁.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(15)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>8.57</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustrorus sencillus</td>
<td>8.43</td>
<td>15</td>
<td>74</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>6.96</td>
<td>15</td>
<td>61</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>5.80</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia perierctta-urtica</td>
<td>4.16</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>141</td>
<td>Paraphoxus vigitegus</td>
<td>2.66</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>2.03</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsida serricata</td>
<td>1.50</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>137</td>
<td>Paraphoxus epistomus</td>
<td>1.53</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>354</td>
<td>Thalenessa spinosa</td>
<td>1.30</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>345</td>
<td>Spiophanes berkeleyorum</td>
<td>1.23</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>1.17</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>193</td>
<td>Euphilomedes carcharedonta</td>
<td>1.13</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>0.93</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>Macoma moesta alaskana</td>
<td>0.93</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence \([f(15)]\), and mean number of individuals/m² \(\text{N/m}^2\) of the 15 most dominant species.
150. The diversity (H') values ranged from 1.79 to 4.20. The highest values of diversity were found in the southwest and northern portions of assemblage D. The species richness (SR) values ranged from 2.12 to 6.88 and the evenness (J') values ranged from 0.40 to 0.81. The highest species richness and evenness values were generally associated with the high diversity values in the southwest and northern portions of assemblage D.

151. The density of macrofauna was low at all stations ranging from 196 individuals/m2 to 780 individuals/m2 with the highest values at the deeper stations. The biomass values ranged from 1.25 g to 5.84 g ash-free dry weight/m2.

152. The dominant species of assemblage D was the gastropoda Olivella pycna (Table C15). Olivella pycna occurred at all 38 stations and had a mean of 128 individuals/m2. Magelona sacculata, a polychaete, was also dominant, occurring at all 38 stations with a mean of 49 individuals/m2. Other dominant species included the cumacean Diastylopsis dawsoni, the amphipoda Monoculodes spinipes, and the gastropoda Olivella biplicata.

153. Station Group D$_1$. Station group D$_1$ consisted of four stations located in 16-26 m of water south of the mouth of the Columbia River. The four stations joined station groups D$_2$ and D$_3$ at 0.56 Bray-Curtis units.

154. The sediment at all stations included less than 1.5 percent silt and clay. The median phi-size ranged from 1.96 ϕ at station 125 to 2.59 ϕ at station 59.

155. Diversity (H') values ranged from 2.70 to 3.36, species richness (SR) from 2.77 to 3.89, and evenness (J') ranged from 0.61 to 0.81.

156. The density of macrofauna was low ranging from 196 individuals/m2 at station 121 to 340 individuals/m2 at station 124. The biomass values ranged from 1.25 to 2.00 g ash-free dry weight/m2.

157. Dominant species were the polychaete Magelona sacculata and the gastropoda Olivella pycna. Also dominant were the mysid Archeomysis grebnitzkii and the amphipods Hippomedon denticulatus and Monoculodes spinipes (Table C16).
<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species Name</th>
<th>BI</th>
<th>f(38)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>9.71</td>
<td>38</td>
<td>128</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>7.36</td>
<td>38</td>
<td>49</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>4.26</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>4.21</td>
<td>38</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>3.91</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>2.47</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>2.25</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>2.23</td>
<td>28</td>
<td>13</td>
</tr>
<tr>
<td>169</td>
<td>Hippomedon denticulatus</td>
<td>1.78</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>153</td>
<td>Mandibulophoxua unirostratus</td>
<td>1.71</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>1.32</td>
<td>21</td>
<td>4</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence [f(38)], and mean number of individuals/m² (N/m²) of the 11 most dominant species.
Table C16

Dominant Species at Station Group D₁.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(4)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>9.50</td>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>9.00</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>6.75</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>169</td>
<td>Hippomedon denticulatus</td>
<td>6.25</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>5.00</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>3.00</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>2.50</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>2.12</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Includes Biological Index (BI), frequency of occurrence [f(4)], and mean number of individuals/m² (N/m²) of the 8 most dominant species.
158. **Station Group D₂.** Station group D₂ consisted of 25 stations (13-27 m) which were located directly off the mouth of the Columbia River. The 25 stations were joined at 0.48 Bray-Curtis units and joined station group D₃ at 0.53 Bray-Curtis units.

159. The percentage of silt and clay ranged from 1 to 5 percent. The median phi ranged from 2.07 ϕ to 3.09 ϕ.

160. The diversity (H') values ranged from 1.79 at station 79 to 4.20 at station 135. Species richness (SR) values ranged from 2.12 at station 79 to 6.68 at station 135. Evenness (J') values ranged from 0.40 to 0.81.

161. The density of macrofauna was low with a range of 244 individuals/m² at station 86 and 77 to 780 individuals/m² at station 92. Biomass values ranged from 1.60 g ash-free dry weight/m² at station 119 to 5.84 g ash-free dry weight at station 85. Diversity (H') and species richness (SR) values tended to be highest in the northwestern portion of station group D₂.

162. The dominant species were the gastropoda *Olivella pycna* and the polychaete *Magelona sacculata*. Other dominant species included the cumacean *Diastylopsis dawsoni*, the amphipoda *Monoculodes spinipes*, and the gastropoda *Olivella biplicata* (Table C17).

163. **Station Group D₃.** Station group D₃ consisted of eight stations (26-40 m) located along the southwest portion of disposal site B. The eight stations were joined at 0.49 Bray-Curtis units and joined station group D₂ at 0.53 Bray-Curtis units.

164. The sediment samples all contained less than 2 percent silt and clay. The median phi-size ranged from 2.01 ϕ to 2.43 ϕ.

165. The diversity (H') values ranged from 3.27 at station 71 to 4.11 at station 73. Species richness (SR) values from 5.25 to 6.47 and evenness (J') values ranged from 0.70 to 0.80.

166. The density of macrofauna ranged from 198 individuals/m² at station 71 to 606 individuals/m² at station 87. The biomass values ranged from 1.33 g ash-free dry weight/m² at station 71 to 5.65 g ash-free dry weight/m² at station 87.
Table C17

Dominant Species at Station Group D₂.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(25)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>9.80</td>
<td>25</td>
<td>139</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sauculata</td>
<td>7.62</td>
<td>25</td>
<td>49</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>5.78</td>
<td>24</td>
<td>51</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>5.16</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>4.54</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>153</td>
<td>Mandibulophoxus uncirostratus</td>
<td>2.40</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>2.38</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>169</td>
<td>Hippomedon denticulatus</td>
<td>1.78</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>1.66</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>1.28</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>197</td>
<td>Bathycopea daltonae</td>
<td>1.18</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>460</td>
<td>Nemertea sp. #4</td>
<td>1.06</td>
<td>17</td>
<td>9</td>
</tr>
</tbody>
</table>

* Included Biological Index (BI), frequency of occurrence \([f(25)]\) and mean number of individuals/m² \([N/m²]\) of the 12 most dominant species.
167. The dominant species were the gastropoda *Olivella pycna* and the polychaete *Haploscoloplos elongatus*. Other dominant species included the polychaetes *Chaetozone setosa* and *Magelona sacculata*, the gastropoda *Olivella baetica*, and the cumacean *Colurostylis occidentalis* (Table C18).

168. Assemblage E. Assemblage E consisted of five stations located in 13-20 m of water on the north side of the main channel of the Columbia River, from inside the north jetty to 3.5 km offshore. The five stations were joined at 0.59 Bray-Curtis units and did not join the other inshore station groups until 0.76 Bray-Curtis units.

169. The sediment at stations 112, 113, and 114 had less than 2 percent silt and clay size particles while station 115 had 3.7 percent and station 111 had 16.4 percent.

170. Diversity (H') values ranged from 1.86 at station 112 to 3.60 at station 114. Species richness (SR) values ranged from 2.86 at station 113 to 4.65 at station 111. Evenness (J') values ranged from 0.42 at station 112 to 0.83 at station 115.

171. The density of macrofauna ranged from 94 individuals/m² at station 113 to 866 individuals/m² at station 111. The biomass values were very low with a range of 0.28 g ash-free dry weight/m² at station 113 to 0.81 g ash-free dry weight/m² at station 115.

172. The two stations located in the mouth of the Columbia River (111 and 112) had lower diversity (H') and evenness (J') values and higher density values when compared to the two most offshore stations (114 and 115) in Assemblage E. Station 113 had intermediate in diversity values with lower species richness, density, and biomass values compared to the other four stations.

173. The dominant species at stations 111 and 112 was the polychaete *Spio filicornis* (449 individuals/m²) that accounted for over 60 percent of the individuals at those stations (Table C19). The dominance of *Spio filicornis* resulted in lower evenness (J') values and thus lower diversity at these stations. The amphipods *Hippomedon denticulatus*, *Mandibulophoxus uncirostratus*, and *Monoculodes spinipes* and the cumacean *Diastylopsis*
Table C18

Dominant Species at Station Group D₃.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(8)</th>
<th>(\bar{N}/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>9.87</td>
<td>8</td>
<td>117</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>6.50</td>
<td>8</td>
<td>45</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>3.68</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>3.56</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>3.06</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>104</td>
<td>Colurostylis occidentalis</td>
<td>3.06</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>2.81</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>316</td>
<td>Owenia collaris</td>
<td>2.25</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>425</td>
<td>Amphipodia periercta-urtica</td>
<td>2.18</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>2.12</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence \([f(8)]\), and mean number of individuals/m² \((\bar{N}/m^2)\) of the 10 most dominant species.
Table C19

**Dominant Species in Assemblage E.*

<table>
<thead>
<tr>
<th>Code</th>
<th>Species</th>
<th>BI</th>
<th>f(5)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>Spio filicornis</td>
<td>7.1</td>
<td>5</td>
<td>184</td>
</tr>
<tr>
<td>169</td>
<td>Hippomedon denticulatus</td>
<td>6.4</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>153</td>
<td>Mandibulophoxus uncirostratus</td>
<td>4.8</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>4.4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>4.4</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>4.0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>Siliqua patula</td>
<td>3.8</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>156</td>
<td>Eohaustorius washingtonianus</td>
<td>3.7</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>154</td>
<td>Atylus tridens</td>
<td>2.8</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>1.8</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>1.7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>1.6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>2.2</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>460</td>
<td>Nemertea sp. #5</td>
<td>1.3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>94</td>
<td>Lamprops sp. #1</td>
<td>1.0</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence [f(5)], and mean number of individuals/m² (N/m²) of the 15 most dominant species.
dawsoni were also dominant species in assemblage E, especially the farthest offshore stations (114 and 115).

Species Groups

174. Classification of 357 species with present techniques was beyond the computational capacity of the CDC CYBER; therefore some form of species reduction was necessary. It has been noted by several authors that rare species carry little classificatory information (Boesch, 1973; Stephenson et al., 1975). In general, species that occurred at less than five stations were excluded from the analysis. The original 357 species were reduced to 158 species. The 199 eliminated species accounted for less than 1 percent of the total number of individuals found in the areal baseline. The species were divided into thirteen species groups (Figure C29). Twenty-five species were not included in any species group. Except for the wide-ranging species groups 10 and 11, all species groups were described by the percent abundance, constancy and fidelity of the constituent species to assemblages or station groups (Fager, 1963; Clifford and Stephenson, 1975). The percent abundance of a species to an assemblage or station group is the percent of the total abundance of that species restricted to an assemblage or station group. The percent constancy of a species to an assemblage or station group is the percent frequency of occurrence of a species within an assemblage or station group. The percent fidelity of a species to an assemblage or station group is the percent occurrence of a species restricted to an assemblage or station group. Species groups 10 and 11 were described by the total number of individuals of a species obtained in the areal baseline and the percent of the stations and assemblages that the species was found. The dominance of a species within an assemblage or station group was defined as the Biological Index (BI) value (see Materials and Methods). Each species group is described in the following paragraphs. Biological index values of 0 are represented by a dash in the tables of species groups for visual clarification.

175. Species Group 1. Species group 1 (Table C20) consisted of 32 species which were found predominately at the most offshore stations.
<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Thyasira flexuosa</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>282</td>
<td>Maldane sarsi</td>
<td>99.9</td>
<td>100.0</td>
<td>90.9</td>
<td>8.8</td>
</tr>
<tr>
<td>278</td>
<td>Magelona longicornis</td>
<td>96.6</td>
<td>100.0</td>
<td>50.0</td>
<td>6.0</td>
</tr>
<tr>
<td>125</td>
<td>Ampelisca brevisimulata</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>Cyclocardia ventricosa</td>
<td>100.0</td>
<td>90.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>339</td>
<td>Rhodine bitorquata</td>
<td>97.5</td>
<td>100.0</td>
<td>71.4</td>
<td>0.6</td>
</tr>
<tr>
<td>347</td>
<td>Sternaspis fossor</td>
<td>96.8</td>
<td>100.0</td>
<td>71.4</td>
<td>0.6</td>
</tr>
<tr>
<td>347</td>
<td>Compsomyax subdiaphana</td>
<td>94.4</td>
<td>90.0</td>
<td>81.8</td>
<td>-</td>
</tr>
<tr>
<td>309</td>
<td>Ninoe gemmea</td>
<td>96.6</td>
<td>100.0</td>
<td>83.3</td>
<td>-</td>
</tr>
<tr>
<td>447</td>
<td>Terebellides stromi</td>
<td>94.9</td>
<td>80.0</td>
<td>80.0</td>
<td>-</td>
</tr>
<tr>
<td>442</td>
<td>Paronis gracilis culatus</td>
<td>100.0</td>
<td>90.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>470</td>
<td>Brada pluribranchiata</td>
<td>90.6</td>
<td>90.0</td>
<td>75.0</td>
<td>-</td>
</tr>
<tr>
<td>312</td>
<td>Notomastus hemipodus</td>
<td>82.8</td>
<td>100.0</td>
<td>50.0</td>
<td>1.0</td>
</tr>
<tr>
<td>334</td>
<td>Praxillella gracilis</td>
<td>81.8</td>
<td>100.0</td>
<td>62.5</td>
<td>-</td>
</tr>
<tr>
<td>328</td>
<td>Pista cristata</td>
<td>88.5</td>
<td>100.0</td>
<td>90.9</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>Chaetodermatidae sp. #1</td>
<td>80.0</td>
<td>100.0</td>
<td>71.4</td>
<td>-</td>
</tr>
<tr>
<td>435</td>
<td>Parandalia fauveli</td>
<td>82.9</td>
<td>90.0</td>
<td>69.2</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>Pandora filosa</td>
<td>80.9</td>
<td>80.0</td>
<td>80.0</td>
<td>-</td>
</tr>
<tr>
<td>103</td>
<td>Eudorellopsis longirostris</td>
<td>92.3</td>
<td>70.0</td>
<td>87.5</td>
<td>-</td>
</tr>
<tr>
<td>134</td>
<td>Westwoodilla caecula</td>
<td>70.6</td>
<td>80.0</td>
<td>72.7</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Oenopota turricula</td>
<td>81.2</td>
<td>80.0</td>
<td>70.0</td>
<td>-</td>
</tr>
<tr>
<td>445</td>
<td>Praxillella affinis pacifica</td>
<td>82.2</td>
<td>80.0</td>
<td>88.9</td>
<td>-</td>
</tr>
<tr>
<td>335</td>
<td>Munispio cirriferi</td>
<td>78.3</td>
<td>80.0</td>
<td>57.1</td>
<td>-</td>
</tr>
<tr>
<td>449</td>
<td>Cossura nr. laeviseta</td>
<td>70.1</td>
<td>90.0</td>
<td>69.2</td>
<td>-</td>
</tr>
<tr>
<td>422</td>
<td>Oligochaeta spp.</td>
<td>93.5</td>
<td>80.0</td>
<td>75.0</td>
<td>-</td>
</tr>
<tr>
<td>465</td>
<td>Harmothoe nr. lunulata</td>
<td>75.0</td>
<td>80.0</td>
<td>66.7</td>
<td>-</td>
</tr>
<tr>
<td>437</td>
<td>Myriochele heeri</td>
<td>80.6</td>
<td>70.0</td>
<td>70.0</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>Musculus laevigata</td>
<td>96.2</td>
<td>60.0</td>
<td>85.7</td>
<td>-</td>
</tr>
<tr>
<td>225</td>
<td>Aristobranchus ornatus</td>
<td>98.2</td>
<td>80.0</td>
<td>88.9</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Turbonilla sp. #1</td>
<td>96.9</td>
<td>80.0</td>
<td>72.7</td>
<td>0.3</td>
</tr>
<tr>
<td>26</td>
<td>Adontorhina cyclia</td>
<td>96.2</td>
<td>60.0</td>
<td>85.7</td>
<td>-</td>
</tr>
<tr>
<td>444</td>
<td>Maldanidae sp. #14</td>
<td>100.0</td>
<td>80.0</td>
<td>100.0</td>
<td>-</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity and Biological Index (BI) for each species in station group A.
Figure C29. Dendrogram of Dissimilarity Between Species-Area1 Baseline
(station group A_1, 75-97 m). Only two species in species group 1 were dominant at station group A_1, the polychaetes *Maldane sarsi* (BI = 8.8) and *Magelona longicornis* (BI = 6.0). The distribution of *Maldane sarsi* exemplifies the distribution of species included in species group 1 (Figure C30).

176. The percentage abundance of each species restricted to station group A_1 ranged from 70 to 100 percent with a mean of 89.9 percent. The constancy of species group 1 in station group A_1 ranged from 60 to 100 percent with a mean of 86.9 percent. The fidelity of species in species group 1 to station group A_1 ranged from 50 to 100 percent with a mean of 78.7 percent. Of the 4949 individuals that comprise species group 1, 95 percent were restricted to station group A_1, 5 percent were found in station groups A_2, A_3, or A_4, and only seven individuals were found outside assemblage A.

177. **Species Group 2.** Species group 2 (Table C21) consisted of five species that were completely restricted to assemblage A with maximum abundance found at station group A_1 and the northernmost stations in station group A_2 (stations 99, 143, 147, and 150). The constancy of species within group 2 to assemblage A ranged from 37 to 51 percent with a mean of 45 percent. The percentage abundance of these species restricted to assemblage A and fidelity to assemblage A was 100 percent. None of the species was dominant.

178. **Species Group 3.** Species group 3 (Table C22) consisted of two rare species predominately restricted to assemblage A. Only one individual of Nemertea sp. #1 was found outside assemblage A. The constancy of both species to assemblage A was 42 percent.

179. **Species Group 4.** Species group 4 (Table C23) consisted of three species that were restricted to assemblage A. None of the species were found at station group A_4, and only one individual of Anthozoa sp. #1 was found at station group A_3. The percentage abundance restricted to assemblage A and the fidelity to assemblage A was 100 percent. The constancy of species group 4 to assemblage A ranged from 47 to 54 percent with a mean of 50 percent. None of the species was dominant.
Figure C30. Distribution of *Maldane sarsi*
Table C21

**Species Group 2.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>439</td>
<td>Ampharete arctica</td>
<td>100</td>
<td>41.7</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>443</td>
<td>Tharyx sp. #3</td>
<td>100</td>
<td>51.2</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>292</td>
<td>Polydora sp. #2</td>
<td>100</td>
<td>50.0</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>390</td>
<td>Nephtys ferruginea</td>
<td>100</td>
<td>37.5</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>459</td>
<td>Podarkeopsis brevipalpa</td>
<td>100</td>
<td>45.8</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) for each species in assemblage A.

Table C22

**Species Group 3.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>Argissa hamatipes</td>
<td>100.0</td>
<td>41.7</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>438</td>
<td>Nemertea sp. #1</td>
<td>92.3</td>
<td>41.7</td>
<td>91.7</td>
<td>-</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) for each species in assemblage A.
180. **Species Group 5.** Species group 5 (Table C24) consisted of four species primarily restricted to assemblage A. None of the species were dominant. The highest abundance of species group 5 was found at station group A₄. The percentage abundance restricted to station group A₄ ranged from 44 to 82 percent with a mean of 57 percent. The percentage abundance of species group 5 restricted to assemblage A ranged from 94 to 100 percent with a mean of 98 percent. Both *Pectinaria granulata* and *Paraphoxus vigitegus* were restricted to assemblage A. One individual of *Trochachaeta franciscanum* at station 145 and 19 individuals of *Macoma nusuta* were found in assemblage B. The constancy of species group 5 to assemblage A ranged from 58 to 83 percent with a mean of 70 percent.

181. **Species Group 6.** Species group 6 (Table C25) consisted of 43 species that were primarily restricted to assemblage A (60-97 m). This included 8 of the top 10 numerically dominant species found in assemblage A, including *Axionopsida serricata, Lumbrineris luti, Myriochele oculata, Mediomastus californiensis, Acila castrensis, Heteromastus filobranchus, Spiochaetopterus costarum, and Spiophanes berkeleyorum*. The distribution of *Lumbrineris luti* exemplifies the distribution pattern of species group 6 (Figure C31 and C32).

182. The percentage abundance of species restricted to assemblage A ranged from 66 to 100 percent with a mean of 91.6 percent. The constancy of species group 6 to assemblage A ranged from 58 to 100 percent with a mean of 86.7 percent. The fidelity of species in species group 6 to assemblage A ranged from 41 to 100 percent with a mean of 80.8 percent. Of the 50,603 individuals that comprised species group 6, only 5.4 percent were found in assemblage B and less than 1 percent at the remaining assemblages combined.

183. **Species Group 7.** Species group 7 (Table C26) consisted of seven species that were predominately found in assemblage C and at stations 145, 146, 151, and 152. All of these stations were located in shallow water (18-47 m) away from the mouth of the Columbia River. Two species, the polychaete *Spiophanes bombyx* (BI = 7.76) and the amphipoda
Table C23

Species Group 4.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>337</td>
<td>Paraprionospio pinnata</td>
<td>100.0</td>
<td>54.1</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>377</td>
<td>Anthozoa sp. #1</td>
<td>100.0</td>
<td>45.8</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>406</td>
<td>Asychis disparidentata</td>
<td>100.0</td>
<td>50.0</td>
<td>100.0</td>
<td>-</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity and Biological Index (BI) of species in assemblage A.

Table C24

Species Group 5.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
<td>Trochachaeta franciscorum</td>
<td>99.8</td>
<td>83.3</td>
<td>95.2</td>
<td>0.33</td>
</tr>
<tr>
<td>319</td>
<td>Pectinaria granulata</td>
<td>100.0</td>
<td>66.7</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>Macoma nusuta</td>
<td>93.9</td>
<td>58.3</td>
<td>60.8</td>
<td>0.33</td>
</tr>
<tr>
<td>142</td>
<td>Paraphoxus vigitegus</td>
<td>100.0</td>
<td>70.8</td>
<td>100.0</td>
<td>0.08</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity and Biological Index (BI) of species in assemblage A.
<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species Name</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Mitrellia gouldii</td>
<td>74.7</td>
<td>95.8</td>
<td>53.7</td>
<td>-</td>
</tr>
<tr>
<td>221</td>
<td>Ampharete acutifrons</td>
<td>84.9</td>
<td>95.8</td>
<td>56.1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Cylindocheta attoneae</td>
<td>81.6</td>
<td>79.2</td>
<td>67.9</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Holothyra nematode</td>
<td>85.0</td>
<td>83.3</td>
<td>76.0</td>
<td>-</td>
</tr>
<tr>
<td>259</td>
<td>Goniodoma acutifrons</td>
<td>73.3</td>
<td>91.7</td>
<td>58.9</td>
<td>-</td>
</tr>
<tr>
<td>264</td>
<td>Homomastus tribranchnus</td>
<td>77.9</td>
<td>95.8</td>
<td>62.9</td>
<td>3.42</td>
</tr>
<tr>
<td>456</td>
<td>Nemeretida sp. #4</td>
<td>65.6</td>
<td>83.3</td>
<td>73.1</td>
<td>0.29</td>
</tr>
<tr>
<td>294</td>
<td>Homomastus californiens</td>
<td>91.6</td>
<td>100.0</td>
<td>75.0</td>
<td>2.58</td>
</tr>
<tr>
<td>322</td>
<td>Pholoe minuta</td>
<td>76.4</td>
<td>100.0</td>
<td>46.2</td>
<td>1.58</td>
</tr>
<tr>
<td>20</td>
<td>Nucula tenuis</td>
<td>91.3</td>
<td>100.0</td>
<td>52.2</td>
<td>1.46</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsis affinis</td>
<td>96.4</td>
<td>100.0</td>
<td>41.4</td>
<td>9.17</td>
</tr>
<tr>
<td>345</td>
<td>Spio phageae Berkeleygiroum</td>
<td>88.8</td>
<td>100.0</td>
<td>41.4</td>
<td>2.42</td>
</tr>
<tr>
<td>4</td>
<td>Massariidae mordicus</td>
<td>68.6</td>
<td>95.8</td>
<td>47.9</td>
<td>-</td>
</tr>
<tr>
<td>245</td>
<td>Echinocardium californicum</td>
<td>77.3</td>
<td>97.5</td>
<td>84.0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Odostomia sp. #1</td>
<td>92.4</td>
<td>100.0</td>
<td>75.8</td>
<td>0.12</td>
</tr>
<tr>
<td>19</td>
<td>Epitonium tintum</td>
<td>99.5</td>
<td>95.8</td>
<td>67.6</td>
<td>3.83</td>
</tr>
<tr>
<td>236</td>
<td>Barbitella americana</td>
<td>100.0</td>
<td>75.0</td>
<td>100.0</td>
<td>0.25</td>
</tr>
<tr>
<td>434</td>
<td>Pilargis berkeleyae</td>
<td>100.0</td>
<td>70.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>Nematelomorpha californensis</td>
<td>82.3</td>
<td>70.0</td>
<td>94.2</td>
<td>-</td>
</tr>
<tr>
<td>288</td>
<td>Polydora caulleryi</td>
<td>100.0</td>
<td>79.2</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>67</td>
<td>Dentaliidae sp.</td>
<td>98.9</td>
<td>87.5</td>
<td>91.3</td>
<td>0.17</td>
</tr>
<tr>
<td>331</td>
<td>Polycirrus sp.</td>
<td>93.0</td>
<td>91.7</td>
<td>78.6</td>
<td>0.08</td>
</tr>
<tr>
<td>101</td>
<td>Diastylis alaskensis</td>
<td>100.0</td>
<td>79.7</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>320</td>
<td>Pectinaria californiens</td>
<td>100.0</td>
<td>95.8</td>
<td>100.0</td>
<td>0.45</td>
</tr>
<tr>
<td>275</td>
<td>Lumbrineria lutea</td>
<td>99.9</td>
<td>100.0</td>
<td>82.8</td>
<td>5.84</td>
</tr>
<tr>
<td>300</td>
<td>Myriochele oculata</td>
<td>99.8</td>
<td>100.0</td>
<td>82.8</td>
<td>5.00</td>
</tr>
<tr>
<td>279</td>
<td>Glycera capitata</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>266</td>
<td>Leucine cirrata</td>
<td>97.9</td>
<td>91.7</td>
<td>88.0</td>
<td>-</td>
</tr>
<tr>
<td>309</td>
<td>Anebracerus gracilis</td>
<td>100.0</td>
<td>75.0</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>482</td>
<td>Gephyra alborotunda</td>
<td>100.0</td>
<td>70.8</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>398</td>
<td>Nereis zonata</td>
<td>98.8</td>
<td>83.3</td>
<td>95.0</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>Macoma californica</td>
<td>100.0</td>
<td>91.7</td>
<td>100.0</td>
<td>0.66</td>
</tr>
<tr>
<td>242</td>
<td>Deccasteria gracilis</td>
<td>99.9</td>
<td>95.0</td>
<td>95.8</td>
<td>1.42</td>
</tr>
<tr>
<td>336</td>
<td>Prionospio malgareti</td>
<td>100.0</td>
<td>83.8</td>
<td>100.0</td>
<td>0.13</td>
</tr>
<tr>
<td>352</td>
<td>Sphaerodrillidae costarum</td>
<td>100.0</td>
<td>87.5</td>
<td>100.0</td>
<td>3.04</td>
</tr>
<tr>
<td>357</td>
<td>Thyone sp. #1</td>
<td>100.0</td>
<td>83.3</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>297</td>
<td>Malinae cuculata</td>
<td>98.3</td>
<td>83.3</td>
<td>95.2</td>
<td>-</td>
</tr>
<tr>
<td>446</td>
<td>Nemeretida sp. #1</td>
<td>98.2</td>
<td>91.7</td>
<td>88.0</td>
<td>-</td>
</tr>
<tr>
<td>182</td>
<td>Pleuromamma cephalica</td>
<td>100.0</td>
<td>66.7</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Tubulipina suturalis</td>
<td>90.5</td>
<td>58.3</td>
<td>87.5</td>
<td>-</td>
</tr>
<tr>
<td>197</td>
<td>Photis brevis</td>
<td>90.0</td>
<td>70.8</td>
<td>61.5</td>
<td>-</td>
</tr>
<tr>
<td>324</td>
<td>Anaitides mucosa</td>
<td>92.6</td>
<td>58.3</td>
<td>86.7</td>
<td>-</td>
</tr>
<tr>
<td>192</td>
<td>Nematoda sp.</td>
<td>81.8</td>
<td>83.3</td>
<td>76.9</td>
<td>0.42</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) for species in assemblage A.
Table C26

Species Group 7.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>Paraphoxus vigitegus</td>
<td>86.2</td>
<td>68.4</td>
<td>69.9</td>
<td>2.89</td>
</tr>
<tr>
<td>354</td>
<td>Thalenessa spinosa</td>
<td>94.7</td>
<td>68.4</td>
<td>76.5</td>
<td>1.02</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>95.1</td>
<td>100.0</td>
<td>50.0</td>
<td>7.13</td>
</tr>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>89.6</td>
<td>100.0</td>
<td>38.0</td>
<td>7.76</td>
</tr>
<tr>
<td>29</td>
<td>Macoma moesta alaskana</td>
<td>69.8</td>
<td>94.7</td>
<td>60.0</td>
<td>1.45</td>
</tr>
<tr>
<td>137</td>
<td>Paraphoxus epistomus</td>
<td>83.7</td>
<td>89.5</td>
<td>56.7</td>
<td>2.00</td>
</tr>
<tr>
<td>158</td>
<td>Photis lacia</td>
<td>63.4</td>
<td>78.9</td>
<td>62.5</td>
<td>-</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblage C and at stations 145, 146, 151, and 152.

Table C27

Species Group 8.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>Mesolamprops sp. #1</td>
<td>84.0</td>
<td>53.1</td>
<td>74.0</td>
<td>0.11</td>
</tr>
<tr>
<td>98</td>
<td>Diastylopsis tenuis</td>
<td>90.7</td>
<td>53.1</td>
<td>85.0</td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td>Paraphoxus fatigans</td>
<td>87.0</td>
<td>46.9</td>
<td>83.3</td>
<td>1.03</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblages B and C.
Figure C31. Distribution of *Lumbrineris luti*
Figure C32. Distribution of *Lumbrineris luti II*
Eohaustorius sencillus (BI = 7.13), were dominant at those stations. Except for the amphipoda Photis lacia, the remaining species were moderately dominant.

184. The percentage abundance of species group 7 restricted to these stations ranged from 63 to 95 percent with a mean of 83 percent. The constancy of species group 7 to those stations ranged from 68 to 100 percent with a mean of 86 percent. The fidelity of species group 7 to those stations was low with a range of 38–77 percent and a mean of 59 percent.

185. **Species Group 8.** Species group 8 (Table C27) consisted of three species primarily restricted to assemblages B and C. None of the species were dominant species in assemblages B or C except Paraphoxus fatigans at stations 142, 146, and 151. All three species were most abundant at stations 142, 146, and 151 in the northern part of station group B2.

186. The percentage abundance of each species restricted to assemblages B and C ranged from 84 to 91 percent with a mean 87 percent. The constancy of species to assemblages B and C ranged from 47 to 53 percent with a mean of 51 percent. The fidelity of species to assemblage B and C ranged from 74 to 85 percent with a mean of 81 percent.

187. **Species Group 9.** Species group (Table C28) consisted of two species found in moderate depths in assemblages A, B, and C except station group A1 (the deepest station group in assemblage A). Neither species was dominant. Both species had a high percentage abundance restricted to those stations (97 percent) and high fidelity (96 percent) but low constancy (58 percent) in those stations.

188. **Species Group 10.** Species group 10 (Table C29) consisted of four species which were widespread throughout all assemblages except E. Only Diastylopsis dawsoni, a cumacean, was found in assemblage E. Diastylopsis dawsoni was the dominant species in the areal baseline (BI = 3.45) with very high abundances in assemblage B.

189. **Species Group 11.** Species group 11 (Table C30) consisted of 15 species which were widespread throughout the study area. The 15 species were found in every assemblage except assemblage E, where seven species were not found. The polychaetes Haploscoloplos elongatus (BI = 2.17)
Table C28

Species Group 9.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Abundance (%)</th>
<th>Constancy (%)</th>
<th>Fidelity (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>Euphilomedes carcharodonta</td>
<td>99.0</td>
<td>69.6</td>
<td>96.9</td>
<td>0.45</td>
</tr>
<tr>
<td>329</td>
<td>Lumbrineris bicirrata</td>
<td>94.6</td>
<td>45.6</td>
<td>95.5</td>
<td>-</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblages B and C.

Table C29

Species Group 10.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>N</th>
<th>Station (%)</th>
<th>Assemblage (%)</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>Owenia collaris</td>
<td>893</td>
<td>52</td>
<td>80</td>
<td>0.91</td>
</tr>
<tr>
<td>408</td>
<td>Glycinda picta</td>
<td>226</td>
<td>45</td>
<td>80</td>
<td>0.24</td>
</tr>
<tr>
<td>463</td>
<td>Nemertea sp. #6</td>
<td>73</td>
<td>31</td>
<td>80</td>
<td>0.04</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsiis dawsoni</td>
<td>20,441</td>
<td>77</td>
<td>100</td>
<td>3.45</td>
</tr>
</tbody>
</table>

* Includes total number of individuals (N), percentage constancy to stations and assemblages and Biological Index (BI) for each species.
Table C30

Species Group 11.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>N</th>
<th>BI</th>
<th>Stations (%)</th>
<th>Assemblage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>1704</td>
<td>2.17</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>310</td>
<td>Northria iridescens</td>
<td>163</td>
<td>-</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozoan setosa</td>
<td>1080</td>
<td>2.32</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>365</td>
<td>0.38</td>
<td>61</td>
<td>100</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>1384</td>
<td>1.98</td>
<td>84</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>383</td>
<td>0.75</td>
<td>64</td>
<td>80</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>305</td>
<td>0.24</td>
<td>54</td>
<td>100</td>
</tr>
<tr>
<td>256</td>
<td>Glycinde sp. #2</td>
<td>257</td>
<td>0.38</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>104</td>
<td>Colurostylis occidentalis</td>
<td>133</td>
<td>0.27</td>
<td>44</td>
<td>80</td>
</tr>
<tr>
<td>78</td>
<td>Paracaudina chilensis</td>
<td>964</td>
<td>1.02</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>198</td>
<td>Tecticeps convexus</td>
<td>348</td>
<td>0.34</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>457</td>
<td>2.21</td>
<td>79</td>
<td>100</td>
</tr>
<tr>
<td>197</td>
<td>Bathycopoea daltonae</td>
<td>287</td>
<td>0.51</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>Siliqua patula</td>
<td>186</td>
<td>0.33</td>
<td>48</td>
<td>100</td>
</tr>
<tr>
<td>36</td>
<td>Tellina modesta</td>
<td>527</td>
<td>0.91</td>
<td>42</td>
<td>80</td>
</tr>
</tbody>
</table>

*Includes total number of individuals (N), percent constancy to stations and assemblages, and Biological Index (BI) for each species.
and Chaetozone setosa (BI = 2.32) (Figures C33 and C34); the amphipoda Monoculodes spinipes (BI = 2.21) and the ophiuroid, Amphiodia perierctica-urtica (BI = 1.98) were dominant species in most assemblages.

190. Species Group 12. Species group 12 (Table C31) consisted of 11 species which were predominantly found in the shallow-water sand assemblages C, D, and E. A few individuals (5.8 percent) were found in assemblage B, and only three individuals were found in assemblage A (0.05 percent). The gastropoda Olivella pycna (BI = 6.59) and the polychaete Magelona sacculata (BI = 7.41) were dominant species at the shallow-water stations. The distribution of Magelona sacculata exemplifies this distribution pattern (Figure C35 and C36).

191. The percentage abundance of each species restricted to assemblages C, D, and E ranged from 73 to 100 percent with a mean of 92 percent. The constancy of species in assemblages C, D, and E ranged from 74 to 100 percent with a mean of 87 percent. The fidelity of species in species group 12 to assemblages C, D, and E ranged from 43 to 96 percent with a mean of 66 percent.

192. Species Group 13. Species group 13 (Table C32) consisted of two crustacean species, which were restricted to assemblage E and station group D1 (13-26 m), near the mouth of the Columbia River. Eohaustorius washingtonianus was moderately dominant (BI = 2.61), and Lamprops sp. #1 was not dominant (BI = 0.67). The constancy of Lamprops sp. #1 to assemblage E and station group D1 was 77.8 percent and Eohaustorius washingtonianus was 55.6 percent.

Comparison of Species and Site Classification

193. A two-way coincidence table derived from the station x species classification is summarized in Figure C37. Cell constancy was calculated as percentage occupancy for each station group, species group cell. A second two-way coincidence table was calculated for the cell constancy of each assemblage group, species group cell. Only species groups which contained more than five species were included in the second coincidence table (Figure C38).

194. The first six species groups (species groups 1-6), including 88 species, were primarily restricted to station groups A1-4 and can be con-
Table C31

Species Group 12.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species Code</th>
<th>Species Code</th>
<th>Species Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>92.3</td>
<td>77.6</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>92.2</td>
<td>86.3</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>93.0</td>
<td>84.5</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>98.0</td>
<td>96.6</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>93.5</td>
<td>74.1</td>
</tr>
<tr>
<td>3</td>
<td>Nassarius fossatus</td>
<td>84.2</td>
<td>51.7</td>
</tr>
<tr>
<td>471</td>
<td>Nemertea sp. #7</td>
<td>97.5</td>
<td>60.3</td>
</tr>
<tr>
<td>153</td>
<td>Mandibulophoxus uncirostratus</td>
<td>100.0</td>
<td>53.4</td>
</tr>
<tr>
<td>169</td>
<td>Hippomedon denticulatus</td>
<td>100.0</td>
<td>43.1</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>73.2</td>
<td>50.0</td>
</tr>
<tr>
<td>460</td>
<td>Nemertea sp. #5</td>
<td>86.8</td>
<td>43.1</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblage C, D, and E.

Table C32

Species Group 13.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species Code</th>
<th>Species Code</th>
<th>Species Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>Lamprops sp. #1</td>
<td>100.0</td>
<td>77.8</td>
</tr>
<tr>
<td>156</td>
<td>Eohaustorius washingtonianus</td>
<td>100.0</td>
<td>55.6</td>
</tr>
</tbody>
</table>

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblage E and at station group D3.
Figure C33. Distribution of Chaetozone setosa
Figure C34. Distribution of Chaetozone setosa II
Figure C35. Distribution of *Magelona sacculata* I
Figure C36. Distribution of Magelona sacculata II
Figure C37. Species Group Constancy at Station Groups (i.e. "Cell Density") Based on Station-Species Classification

<table>
<thead>
<tr>
<th>STATION GROUP</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>B₁</th>
<th>B₂</th>
<th>C</th>
<th>D₁</th>
<th>D₂</th>
<th>D₃</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85.9</td>
<td>27.0</td>
<td>3.9</td>
<td>17.2</td>
<td>1.2</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>64.0</td>
<td>50.0</td>
<td>15.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>55.0</td>
<td>50.0</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>53.3</td>
<td>70.1</td>
<td>8.3</td>
<td>16.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>60.0</td>
<td>78.1</td>
<td>87.5</td>
<td>62.5</td>
<td>12.5</td>
<td>14.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>91.6</td>
<td>90.9</td>
<td>63.9</td>
<td>69.7</td>
<td>25.6</td>
<td>10.6</td>
<td>13.7</td>
<td>1.8</td>
<td>11.3</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>2.8</td>
<td>3.5</td>
<td>-</td>
<td>35.7</td>
<td>32.8</td>
<td>46.9</td>
<td>92.3</td>
<td>17.1</td>
<td>25.0</td>
<td>28.5</td>
<td>11.4</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>25.0</td>
<td>16.7</td>
<td>60.0</td>
<td>33.3</td>
<td>46.6</td>
<td>1.3</td>
<td>25.0</td>
<td>8.3</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>6.6</td>
<td>87.5</td>
<td>75.0</td>
<td>100.0</td>
<td>50.0</td>
<td>50.0</td>
<td>33.3</td>
<td>-</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>62.2</td>
<td>71.8</td>
<td>100.0</td>
<td>37.5</td>
<td>90.0</td>
<td>85.7</td>
<td>30.0</td>
<td>41.0</td>
<td>34.4</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>11</td>
<td>36.6</td>
<td>45.8</td>
<td>86.7</td>
<td>56.6</td>
<td>91.3</td>
<td>82.9</td>
<td>62.6</td>
<td>52.2</td>
<td>82.5</td>
<td>28.3</td>
<td>21.3</td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>1.5</td>
<td>2.2</td>
<td>-</td>
<td>23.4</td>
<td>49.4</td>
<td>57.0</td>
<td>76.7</td>
<td>63.6</td>
<td>68.1</td>
<td>61.8</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>
Figure C38. Species Group Constancy in Assemblages (i.e. "Cell Density") Based on Station-Species Classification
sidered deeper water species. Species group 7 was found in the southern shallow water assemblage C and to a lesser degree at moderate depths in assemblage B and at station group A4. Species group 8 was found at the same locations as species group 7 but with a higher constancy to assemblage B. Species group 9 was found at moderate depths in assemblages A, B, and C. Species groups 11 and 12 were found at all station groups with species group 11 having higher constancy to deeper station groups. Species group 12 was primarily restricted to shallow-water station groups and species group 13 was restricted to the shallowest station group D3 and assemblage E.

195. Assemblage A contained moderate to very high constancy of three of the five most specious species groups (Figure C38). Assemblage B was characterized by very high constancy of species groups 7 and 12. Assemblage C was characterized by very high constancy of species group 7, which was primarily restricted to assemblage C and high constancy of the two widespread species groups 11 and 12. Assemblage D had high constancy of the widespread species groups 11 and 12, and assemblage E only had a high constancy of the widespread species group 12.

196. In summary, only assemblages A and C contained major species groups that were restricted to those assemblages. Assemblage B, C, and E contained primarily species groups which were found throughout the study area.

Seasonal Baseline

197. Twenty-two station locations were chosen for the seasonal baseline (Figure C23). The station numbers for the twenty-two locations are presented in Table C1. The seasonal sediment data for each location are presented in Table C33, and the community structure values are found in Table C34.

198. Bray-Curtis dissimilarity values were calculated between all seasons at each location for cruises C7412B-C7501D, C7504B, C7506C, C7509E and C7601A. Bray-Curtis dissimilarity values for presence and absence data were also calculated. The resultant index is the complement
Table C33

Sediment Characteristics at the 22 Seasonal Baseline Stations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>3.04</td>
<td>3.01</td>
<td>2.98</td>
<td>3.00</td>
<td>2.96</td>
</tr>
<tr>
<td>% Silt</td>
<td>0.47</td>
<td>0.52</td>
<td>0.47</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>% Clay</td>
<td>-0.08</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.10</td>
<td>-0.02</td>
</tr>
<tr>
<td>% Sand</td>
<td>-0.12</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.15</td>
<td>-0.10</td>
</tr>
<tr>
<td>% Silica</td>
<td>0.64</td>
<td>0.60</td>
<td>0.65</td>
<td>0.64</td>
<td>0.71</td>
</tr>
<tr>
<td>% Clay</td>
<td>97.97</td>
<td>97.16</td>
<td>98.22</td>
<td>98.76</td>
<td>96.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>2.94</td>
<td>2.87</td>
<td>2.90</td>
<td>2.91</td>
<td>2.93</td>
</tr>
<tr>
<td>% Silt</td>
<td>0.42</td>
<td>0.40</td>
<td>0.43</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>% Clay</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>% Sand</td>
<td>0.03</td>
<td>0.09</td>
<td>0.01</td>
<td>0.20</td>
<td>0.63</td>
</tr>
<tr>
<td>% Silica</td>
<td>0.65</td>
<td>0.69</td>
<td>0.67</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>% Clay</td>
<td>98.80</td>
<td>98.71</td>
<td>98.27</td>
<td>98.47</td>
<td>98.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>2.75</td>
<td>2.77</td>
<td>2.77</td>
<td>2.78</td>
<td>2.80</td>
</tr>
<tr>
<td>% Silt</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>% Clay</td>
<td>0.10</td>
<td>0.06</td>
<td>0.06</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>% Sand</td>
<td>0.17</td>
<td>0.20</td>
<td>0.15</td>
<td>0.34</td>
<td>0.13</td>
</tr>
<tr>
<td>% Silica</td>
<td>0.74</td>
<td>0.78</td>
<td>0.80</td>
<td>0.97</td>
<td>0.73</td>
</tr>
<tr>
<td>% Clay</td>
<td>99.32</td>
<td>98.81</td>
<td>97.90</td>
<td>98.07</td>
<td>98.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>2.75</td>
<td>2.75</td>
<td>2.77</td>
<td>2.77</td>
<td>2.79</td>
</tr>
<tr>
<td>% Silt</td>
<td>0.28</td>
<td>0.30</td>
<td>0.30</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>% Clay</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>% Sand</td>
<td>0.32</td>
<td>1.70</td>
<td>1.98</td>
<td>1.51</td>
<td>1.84</td>
</tr>
<tr>
<td>% Silica</td>
<td>1.08</td>
<td>2.37</td>
<td>2.72</td>
<td>2.22</td>
<td>2.56</td>
</tr>
<tr>
<td>% Clay</td>
<td>96.87</td>
<td>94.40</td>
<td>94.00</td>
<td>94.41</td>
<td>93.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>3.40</td>
<td>3.38</td>
<td>3.39</td>
<td>3.40</td>
<td>3.44</td>
</tr>
<tr>
<td>% Silt</td>
<td>0.57</td>
<td>0.51</td>
<td>0.54</td>
<td>0.54</td>
<td>0.57</td>
</tr>
<tr>
<td>% Clay</td>
<td>0.38</td>
<td>0.37</td>
<td>0.36</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>% Sand</td>
<td>0.57</td>
<td>0.52</td>
<td>1.69</td>
<td>0.99</td>
<td>0.39</td>
</tr>
<tr>
<td>% Silica</td>
<td>0.73</td>
<td>0.76</td>
<td>1.93</td>
<td>1.27</td>
<td>0.59</td>
</tr>
<tr>
<td>% Clay</td>
<td>76.57</td>
<td>80.47</td>
<td>78.33</td>
<td>78.04</td>
<td>73.10</td>
</tr>
<tr>
<td></td>
<td>21.55</td>
<td>17.46</td>
<td>20.41</td>
<td>19.30</td>
<td>24.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>2.59</td>
<td>2.56</td>
<td>2.54</td>
<td>2.62</td>
<td></td>
</tr>
<tr>
<td>% Silt</td>
<td>0.51</td>
<td>0.59</td>
<td>0.53</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>% Clay</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>% Sand</td>
<td>0.07</td>
<td>0.09</td>
<td>0.10</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>% Silica</td>
<td>0.62</td>
<td>0.60</td>
<td>0.64</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>% Clay</td>
<td>98.79</td>
<td>98.89</td>
<td>98.65</td>
<td>98.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td>0.46</td>
<td>0.39</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>0.66</td>
<td>0.76</td>
<td>0.54</td>
<td></td>
</tr>
</tbody>
</table>
Table C33 (Continued)

<table>
<thead>
<tr>
<th>Station 11</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.76</td>
<td>0.42</td>
<td>-0.13</td>
<td>0.17</td>
<td>1.10</td>
<td>96.35</td>
<td>2.51</td>
<td>1.14</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.68</td>
<td>0.43</td>
<td>-0.05</td>
<td>0.09</td>
<td>0.64</td>
<td>98.79</td>
<td>0.45</td>
<td>0.76</td>
</tr>
<tr>
<td>June 1975</td>
<td>2.74</td>
<td>0.42</td>
<td>-0.00</td>
<td>0.50</td>
<td>1.54</td>
<td>94.74</td>
<td>4.22</td>
<td>1.05</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.68</td>
<td>0.38</td>
<td>-0.00</td>
<td>0.09</td>
<td>0.82</td>
<td>98.67</td>
<td>0.46</td>
<td>0.87</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 12</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.57</td>
<td>0.44</td>
<td>0.03</td>
<td>0.10</td>
<td>0.66</td>
<td>96.10</td>
<td>2.55</td>
<td>0.91</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.61</td>
<td>0.54</td>
<td>0.04</td>
<td>0.12</td>
<td>0.64</td>
<td>97.85</td>
<td>1.25</td>
<td>0.90</td>
</tr>
<tr>
<td>June 1975</td>
<td>2.67</td>
<td>0.67</td>
<td>0.14</td>
<td>0.53</td>
<td>0.02</td>
<td>91.00</td>
<td>6.02</td>
<td>1.21</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.85</td>
<td>0.55</td>
<td>-0.12</td>
<td>0.01</td>
<td>0.75</td>
<td>95.88</td>
<td>2.98</td>
<td>1.15</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.69</td>
<td>0.60</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.52</td>
<td>97.88</td>
<td>1.13</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 13</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.87</td>
<td>0.58</td>
<td>-0.09</td>
<td>-0.02</td>
<td>0.66</td>
<td>96.37</td>
<td>2.55</td>
<td>0.91</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.99</td>
<td>0.94</td>
<td>-0.00</td>
<td>0.04</td>
<td>0.37</td>
<td>85.10</td>
<td>13.41</td>
<td>1.50</td>
</tr>
<tr>
<td>June 1975</td>
<td>5.05</td>
<td>1.89</td>
<td>0.57</td>
<td>1.53</td>
<td>1.50</td>
<td>12.25</td>
<td>71.44</td>
<td>16.31</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>3.54</td>
<td>1.27</td>
<td>0.58</td>
<td>2.27</td>
<td>1.98</td>
<td>60.73</td>
<td>30.34</td>
<td>8.94</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 14</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.27</td>
<td>0.39</td>
<td>0.01</td>
<td>0.21</td>
<td>0.82</td>
<td>96.69</td>
<td>0.24</td>
<td>0.87</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.74</td>
<td>0.63</td>
<td>0.02</td>
<td>0.26</td>
<td>0.82</td>
<td>93.71</td>
<td>5.26</td>
<td>1.01</td>
</tr>
<tr>
<td>June 1975</td>
<td>2.12</td>
<td>0.43</td>
<td>0.17</td>
<td>1.57</td>
<td>1.91</td>
<td>94.84</td>
<td>3.93</td>
<td>2.13</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.55</td>
<td>1.77</td>
<td>0.65</td>
<td>1.83</td>
<td>1.31</td>
<td>70.13</td>
<td>21.78</td>
<td>8.09</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.09</td>
<td>0.40</td>
<td>0.12</td>
<td>0.29</td>
<td>0.78</td>
<td>98.60</td>
<td>0.33</td>
<td>1.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 15</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.56</td>
<td>0.47</td>
<td>-0.04</td>
<td>-0.07</td>
<td>0.64</td>
<td>98.60</td>
<td>0.57</td>
<td>1.02</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.48</td>
<td>1.29</td>
<td>0.56</td>
<td>0.85</td>
<td>0.49</td>
<td>79.00</td>
<td>18.41</td>
<td>2.59</td>
</tr>
<tr>
<td>June 1975</td>
<td>4.29</td>
<td>1.91</td>
<td>0.01</td>
<td>1.10</td>
<td>1.40</td>
<td>36.69</td>
<td>53.85</td>
<td>9.46</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.60</td>
<td>1.22</td>
<td>0.54</td>
<td>1.93</td>
<td>1.63</td>
<td>76.74</td>
<td>18.09</td>
<td>5.17</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.50</td>
<td>0.50</td>
<td>0.05</td>
<td>0.77</td>
<td>1.26</td>
<td>74.95</td>
<td>2.91</td>
<td>2.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 16</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>3.37</td>
<td>1.11</td>
<td>0.15</td>
<td>1.41</td>
<td>1.71</td>
<td>62.94</td>
<td>31.13</td>
<td>4.93</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.15</td>
<td>1.18</td>
<td>0.14</td>
<td>0.79</td>
<td>0.95</td>
<td>65.80</td>
<td>30.65</td>
<td>3.55</td>
</tr>
<tr>
<td>June 1975</td>
<td>5.48</td>
<td>2.50</td>
<td>0.35</td>
<td>17.07</td>
<td>62.80</td>
<td>20.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>5.60</td>
<td>2.14</td>
<td>0.41</td>
<td>0.70</td>
<td>0.84</td>
<td>10.29</td>
<td>71.49</td>
<td>17.69</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.83</td>
<td>0.66</td>
<td>0.11</td>
<td>0.22</td>
<td>0.63</td>
<td>91.41</td>
<td>7.33</td>
<td>1.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 17</th>
<th>Mdg</th>
<th>ø</th>
<th>ø²</th>
<th>ø³</th>
<th>ø⁴</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>3.16</td>
<td>0.60</td>
<td>0.26</td>
<td>0.27</td>
<td>0.51</td>
<td>85.56</td>
<td>12.88</td>
<td>1.57</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.31</td>
<td>0.72</td>
<td>0.32</td>
<td>0.58</td>
<td>0.70</td>
<td>71.73</td>
<td>24.85</td>
<td>1.43</td>
</tr>
<tr>
<td>June 1975</td>
<td>3.58</td>
<td>1.77</td>
<td>0.58</td>
<td>1.71</td>
<td>1.46</td>
<td>21.85</td>
<td>64.98</td>
<td>13.17</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>4.42</td>
<td>0.66</td>
<td>0.22</td>
<td>0.82</td>
<td>1.21</td>
<td>75.98</td>
<td>21.30</td>
<td>1.94</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.70</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.24</td>
<td>0.87</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.72</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>2.32</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>2.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.24</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>2.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.05</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>2.30</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>2.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>2.09</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.78</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>2.32</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>2.12</td>
<td>0.14</td>
<td>0.14</td>
<td>0.24</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>2.12</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.05</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>2.30</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>2.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>2.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.78</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>2.32</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>2.12</td>
<td>0.14</td>
<td>0.14</td>
<td>0.24</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>2.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.89</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>2.48</td>
<td>0.17</td>
<td>0.15</td>
<td>0.23</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>2.12</td>
<td>0.14</td>
<td>0.14</td>
<td>0.24</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>2.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Clay</th>
<th>Grain</th>
<th>Gravel</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.22</td>
<td>0.17</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.18</td>
<td>0.43</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.17</td>
<td>0.58</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.15</td>
<td>0.65</td>
<td>0.97</td>
</tr>
<tr>
<td>Station 25</td>
<td>M1φ</td>
<td>σφ</td>
<td>αφ</td>
<td>α²φ</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.61</td>
<td>0.54</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.10</td>
<td>0.48</td>
<td>0.33</td>
<td>0.13</td>
</tr>
<tr>
<td>June 1975</td>
<td>3.44</td>
<td>0.83</td>
<td>0.00</td>
<td>1.11</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>3.38</td>
<td>1.20</td>
<td>0.44</td>
<td>1.68</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 26</td>
<td>2.30</td>
<td>0.39</td>
<td>0.05</td>
<td>0.27</td>
</tr>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.43</td>
<td>1.02</td>
<td>0.55</td>
<td>2.32</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.76</td>
<td>2.26</td>
<td>0.23</td>
<td>1.12</td>
</tr>
<tr>
<td>June 1975</td>
<td>4.08</td>
<td>1.43</td>
<td>0.32</td>
<td>1.75</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Sediments described by median phi size (M1φ), sorting coefficient (σφ), first skewness (αφ), second skewness (α²φ), kurtosis (βφ), and percentage sand, silt and clay.
<table>
<thead>
<tr>
<th>Station 1</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>3.768</td>
<td>0.741</td>
<td>5.887</td>
<td>34</td>
<td>544</td>
<td>1.3540</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.728</td>
<td>0.793</td>
<td>4.412</td>
<td>26</td>
<td>578</td>
<td>0.9414</td>
</tr>
<tr>
<td>June 1975</td>
<td>4.120</td>
<td>0.779</td>
<td>6.342</td>
<td>39</td>
<td>800</td>
<td>3.0786</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>1.934</td>
<td>0.366</td>
<td>5.169</td>
<td>39</td>
<td>3110</td>
<td>1.7602</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.850</td>
<td>0.632</td>
<td>3.850</td>
<td>23</td>
<td>606</td>
<td>0.6378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 2</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>4.155</td>
<td>0.804</td>
<td>6.348</td>
<td>36</td>
<td>496</td>
<td>2.1110</td>
</tr>
<tr>
<td>April 1975</td>
<td>4.186</td>
<td>0.792</td>
<td>6.882</td>
<td>39</td>
<td>578</td>
<td>1.0354</td>
</tr>
<tr>
<td>June 1975</td>
<td>4.034</td>
<td>0.689</td>
<td>8.837</td>
<td>58</td>
<td>1266</td>
<td>2.2130</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>1.995</td>
<td>0.334</td>
<td>7.902</td>
<td>63</td>
<td>5114</td>
<td>2.0210</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>1.633</td>
<td>0.470</td>
<td>6.392</td>
<td>47</td>
<td>2670</td>
<td>1.4116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 3</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>4.682</td>
<td>0.830</td>
<td>6.561</td>
<td>50</td>
<td>413</td>
<td>1.1184</td>
</tr>
<tr>
<td>April 1975</td>
<td>4.928</td>
<td>0.848</td>
<td>9.492</td>
<td>57</td>
<td>730</td>
<td>1.2896</td>
</tr>
<tr>
<td>June 1975</td>
<td>4.726</td>
<td>0.776</td>
<td>10.294</td>
<td>68</td>
<td>1342</td>
<td>2.4654</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.816</td>
<td>0.442</td>
<td>10.401</td>
<td>83</td>
<td>5510</td>
<td>2.0558</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.412</td>
<td>0.425</td>
<td>7.091</td>
<td>51</td>
<td>2308</td>
<td>1.7382</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 4</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.339</td>
<td>0.678</td>
<td>7.572</td>
<td>56</td>
<td>2856</td>
<td>23.4144</td>
</tr>
<tr>
<td>April 1975</td>
<td>2.817</td>
<td>0.470</td>
<td>8.903</td>
<td>64</td>
<td>2960</td>
<td>23.9885</td>
</tr>
<tr>
<td>June 1975</td>
<td>3.563</td>
<td>0.562</td>
<td>11.000</td>
<td>81</td>
<td>2880</td>
<td>18.5452</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>3.877</td>
<td>0.591</td>
<td>12.178</td>
<td>94</td>
<td>4146</td>
<td>22.6546</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>3.091</td>
<td>0.504</td>
<td>9.660</td>
<td>70</td>
<td>2530</td>
<td>24.8204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 6</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>4.333</td>
<td>0.772</td>
<td>7.351</td>
<td>49</td>
<td>1370</td>
<td>2.5250</td>
</tr>
<tr>
<td>April 1975</td>
<td>4.409</td>
<td>0.743</td>
<td>8.487</td>
<td>60</td>
<td>2352</td>
<td>13.7906</td>
</tr>
<tr>
<td>June 1975</td>
<td>1.993</td>
<td>0.336</td>
<td>6.965</td>
<td>61</td>
<td>11018</td>
<td>35.1914</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>0.946</td>
<td>0.163</td>
<td>6.134</td>
<td>56</td>
<td>15670</td>
<td>25.1282</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>3.804</td>
<td>0.667</td>
<td>7.367</td>
<td>52</td>
<td>2030</td>
<td>8.7600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 10</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>3.363</td>
<td>0.792</td>
<td>3.794</td>
<td>19</td>
<td>230</td>
<td>1.2574</td>
</tr>
<tr>
<td>April 1975</td>
<td>4.062</td>
<td>0.875</td>
<td>5.040</td>
<td>25</td>
<td>234</td>
<td>0.7436</td>
</tr>
<tr>
<td>June 1975</td>
<td>3.968</td>
<td>0.809</td>
<td>5.295</td>
<td>30</td>
<td>478</td>
<td>1.0848</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.676</td>
<td>0.514</td>
<td>5.901</td>
<td>37</td>
<td>892</td>
<td>1.8036</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>3.560</td>
<td>0.798</td>
<td>4.080</td>
<td>22</td>
<td>344</td>
<td>1.6654</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 11</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>3.452</td>
<td>0.828</td>
<td>3.660</td>
<td>18</td>
<td>208</td>
<td>0.8110</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.647</td>
<td>0.818</td>
<td>4.014</td>
<td>22</td>
<td>374</td>
<td>2.6316</td>
</tr>
<tr>
<td>June 1975</td>
<td>3.028</td>
<td>0.590</td>
<td>5.315</td>
<td>35</td>
<td>1500</td>
<td>4.2178</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>1.900</td>
<td>0.367</td>
<td>4.835</td>
<td>36</td>
<td>2786</td>
<td>7.1870</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 12</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.789</td>
<td>0.625</td>
<td>4.410</td>
<td>22</td>
<td>234</td>
<td>2.0396</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.159</td>
<td>0.672</td>
<td>4.329</td>
<td>26</td>
<td>644</td>
<td>3.6262</td>
</tr>
<tr>
<td>June 1975</td>
<td>2.060</td>
<td>0.536</td>
<td>5.063</td>
<td>42</td>
<td>6162</td>
<td>9.7246</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.110</td>
<td>0.411</td>
<td>4.672</td>
<td>35</td>
<td>2686</td>
<td>9.5252</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>3.677</td>
<td>0.792</td>
<td>5.116</td>
<td>25</td>
<td>218</td>
<td>3.1920</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 13</th>
<th>H'</th>
<th>J'</th>
<th>SP</th>
<th>S</th>
<th>H/m^2</th>
<th>R/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.729</td>
<td>0.631</td>
<td>3.589</td>
<td>20</td>
<td>398</td>
<td>2.7778</td>
</tr>
<tr>
<td>April 1975</td>
<td>1.273</td>
<td>0.245</td>
<td>4.044</td>
<td>35</td>
<td>8968</td>
<td>6.8374</td>
</tr>
<tr>
<td>June 1975</td>
<td>1.388</td>
<td>0.265</td>
<td>4.473</td>
<td>38</td>
<td>7826</td>
<td>13.3060</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.448</td>
<td>0.521</td>
<td>3.747</td>
<td>26</td>
<td>1580</td>
<td>30.5072</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 14</td>
<td>H'</td>
<td>d'</td>
<td>SR</td>
<td>S</td>
<td>N/m²</td>
<td>B/m²</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Dec 74-Jan 75</td>
<td>4.110</td>
<td>0.795</td>
<td>6.411</td>
<td>36</td>
<td>470</td>
<td>3.6486</td>
</tr>
<tr>
<td>April 1975</td>
<td>1.059</td>
<td>0.199</td>
<td>5.511</td>
<td>49</td>
<td>12124</td>
<td>5.9990</td>
</tr>
<tr>
<td>June 1975</td>
<td>1.760</td>
<td>0.319</td>
<td>6.041</td>
<td>46</td>
<td>3436</td>
<td>5.1860</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.181</td>
<td>0.459</td>
<td>4.009</td>
<td>27</td>
<td>1310</td>
<td>32.7444</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.745</td>
<td>0.650</td>
<td>3.411</td>
<td>18</td>
<td>292</td>
<td>2.0092</td>
</tr>
</tbody>
</table>

Station 15	Dec 74-Jan 75	3.846	0.728	5.924	39	1222	3.4662
April 1975	2.649	0.449	7.236	60	6956	8.4408	
June 1975	2.388	0.398	7.637	64	7654	52.2932	
Sept. 1975	3.469	0.656	5.533	39	1922	45.0134	
Jan. 1976	3.751	0.720	6.052	37	766	11.2380	

Station 16	Dec 74-Jan 75	3.657	0.655	6.669	48	2300	10.9624
April 1975	0.393	0.070	5.137	50	27782	12.9752	
June 1975	2.378	0.438	5.337	43	5234	118.2954	
Sept. 1975	2.173	0.447	4.153	29	2118	29.7808	
Jan. 1976	1.226	0.243	4.427	33	2754	4.3550	

Station 17	Dec 74-Jan 75	2.977	0.556	6.490	41	950	1.6794
April 1975	0.332	0.059	4.955	48	26320	1.5858	
June 1975	1.747	0.322	5.036	43	8370	23.9742	
Sept. 1975	2.173	0.447	4.153	29	2118	29.7808	
Jan. 1976	0.726	0.145	3.973	32	4890	5.1258	

Station 18	Dec 74-Jan 75	4.505	0.820	7.451	45	734	1.2338
April 1975	4.752	0.830	8.478	53	922	1.5952	
June 1975	4.727	0.777	9.977	68	1650	1.9506	
Sept. 1975	3.861	0.612	10.445	79	3502	2.9180	
Jan. 1976	3.523	0.645	6.904	44	1014	2.5274	

Station 19	Dec 74-Jan 75	4.221	0.789	9.074	40	462	1.6928
April 1975	4.243	0.849	5.792	32	422	1.0586	
June 1975	4.513	0.792	8.477	52	820	1.9728	
Sept. 1975	1.532	0.279	6.300	45	2714	2.2974	
Jan. 1976	3.071	0.632	4.724	29	750	1.1032	

Station 20	Dec 74-Jan 75	3.232	0.808	3.272	16	196	1.8456
April 1975	4.345	0.825	6.339	30	194	1.3140	
June 1975	3.731	0.727	6.042	35	556	3.1810	
Sept. 1975	1.952	0.378	7.105	36	1682	2.4902	
Jan. 1976	2.560	0.673	2.875	14	184	1.3558	

Station 21	Dec 74-Jan 75	1.855	0.416	3.704	22	580	0.5182
April 1975	3.739	0.827	4.391	23	300	0.5476	
June 1975	2.355	0.589	2.487	16	832	1.1374	
Sept. 1975	3.611	0.948	3.901	14	56	0.1612	
Jan. 1976	No sample						

Station 22	Dec 74-Jan 75	0.519	0.097	4.329	40	20.489	22.2042
April 1975	0.172	0.031	4.403	45	43.802	11.9920	
June 1975	2.378	0.438	4.498	41	14.566	23.1216	
Sept. 1975	1.593	0.352	3.128	23	2.666	62.0158	
Jan. 1976	2.618	0.545	4.591	28	716	4.3700	

Station 23	Dec 74-Jan 75	4.104	0.743	7.105	46	1126	1.7278
April 1975	4.328	0.767	7.781	50	1086	2.9556	
June 1975	3.428	0.601	7.039	52	2802	5.7724	
Sept. 1975	2.222	0.410	5.459	43	4392	13.6666	
Jan. 1976	3.759	0.727	5.719	36	910	6.0460	

132
Table C34 (Concluded)

<table>
<thead>
<tr>
<th>Station 24</th>
<th>H'</th>
<th>J'</th>
<th>SR</th>
<th>S</th>
<th>N/m²</th>
<th>B/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 74-Jan 75</td>
<td>3.334</td>
<td>0.906</td>
<td>5.471</td>
<td>29</td>
<td>334</td>
<td>1.4009</td>
</tr>
<tr>
<td>April 1975</td>
<td>4.335</td>
<td>0.859</td>
<td>6.203</td>
<td>33</td>
<td>348</td>
<td>1.4096</td>
</tr>
<tr>
<td>June 1975</td>
<td>4.215</td>
<td>0.782</td>
<td>7.104</td>
<td>42</td>
<td>801</td>
<td>1.8898</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.075</td>
<td>0.376</td>
<td>6.246</td>
<td>46</td>
<td>2692</td>
<td>1.4866</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>2.033</td>
<td>0.403</td>
<td>5.168</td>
<td>33</td>
<td>978</td>
<td>1.5402</td>
</tr>
<tr>
<td>Station 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.702</td>
<td>0.606</td>
<td>4.186</td>
<td>22</td>
<td>302</td>
<td>3.3174</td>
</tr>
<tr>
<td>April 1975</td>
<td>3.362</td>
<td>0.617</td>
<td>5.670</td>
<td>37</td>
<td>1144</td>
<td>3.2452</td>
</tr>
<tr>
<td>June 1975</td>
<td>1.267</td>
<td>0.235</td>
<td>4.846</td>
<td>42</td>
<td>9454</td>
<td>10.9960</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>2.750</td>
<td>0.532</td>
<td>4.799</td>
<td>36</td>
<td>3126</td>
<td>17.3958</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 74-Jan 75</td>
<td>2.862</td>
<td>0.602</td>
<td>4.611</td>
<td>27</td>
<td>562</td>
<td>5.8410</td>
</tr>
<tr>
<td>April 1975</td>
<td>1.383</td>
<td>0.264</td>
<td>3.533</td>
<td>26</td>
<td>2368</td>
<td>4.2732</td>
</tr>
<tr>
<td>June 1975</td>
<td>1.695</td>
<td>0.372</td>
<td>4.669</td>
<td>34</td>
<td>2346</td>
<td>4.9940</td>
</tr>
<tr>
<td>Sept. 1975</td>
<td>1.761</td>
<td>0.370</td>
<td>3.573</td>
<td>27</td>
<td>2894</td>
<td>53.9304</td>
</tr>
<tr>
<td>Jan. 1976</td>
<td>No sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Parameters include diversity (H'), evenness (J'), species richness (SR), number of species (S), density (N/m²-individuals/m²), and biomass (B/m²-grams ash-free dry weight/m²).
of the Czekanowski similarity index or, as referred to in the text, the Czekanowski dissimilarity index. Values for both dissimilarity indices at all 22 locations are shown in Figure C39. Mean dissimilarity values less than 0.40 between seasons at the same station were considered low, indicating little seasonal change in the abundance of most dominant species and little seasonal change in species composition. Mean dissimilarity values greater than 0.50 between seasons at the same station were considered high, indicating considerable seasonal change in the abundance of most dominant species and considerable seasonal change in species composition. Dissimilarity values between 0.40 and 0.50 were considered moderate indicating some seasonal change. These values were chosen because station groups formed at approximately 0.40 Bray-Curtis units and assemblages formed at approximately 0.50 Bray-Curtis units. As indicated by the between station variability study, 0.25 Bray-Curtis units represent no detectable seasonal change in the abundance of dominant species or species composition. Seasonal changes in dominant species, community structure values, and sediment for each location are described in the following paragraphs.

Station 1

Station 1 was located in 17-20 m of water and was part of assemblage C in the area baseline study. The sediment was well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.390) was low, indicating little seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.340) was also low, indicating little change in species composition with season.

200. The density of macrofauna ranged from 544 to 3118 individuals/m² with the highest values in June and September. Diversity (H') values were high from December 1974 to June 1975 and were much lower in September 1975 than January 1976. Evenness (J') values also were lower in September 1975 than January 1976. Species richness (SR) values ranged from 3.85 to 6.34 with the highest value in June 1975. Biomass values ranged from 0.94 to 3.08 g ash-free dry weight with the highest value in June 1975.

201. The major seasonal change in dominant species was an increase in
Figure C39. Bray-Curtis and Czekanowski Dissimilarity Between Seasons for 22 Seasonal Stations
the abundance of the polychaetes *Spiophanes bombyx* and *Magelona sacculata* in September 1975.

Station 2

202. Station 2 was located in 29-35 m of water and was part of assemblage C in the areal baseline study. The sediment was well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.440) was moderate, indicating some seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.377) was low, indicating little change in species composition with season.

203. The density of macrofauna ranged from 496 to 5114 individuals/m² with the higher values found in June 1975, September 1975, and January 1976. Diversity (H') values were high from December 1974 to June 1975 with much lower values in September 1975 and January 1976. Evenness (J') values were also lower in September 1975 and January 1976. Species richness (SR) values ranged from 6.35 to 7.90 with the highest values in June 1975 and September 1975. Biomass values ranged from 1.03 to 2.21 g ash-free dry weight/m² with the highest values in December 1974, June 1975, and September 1975.

204. The major seasonal change in dominant species was an increase in the abundance of *Spiophanes bombyx* in June 1975 through January 1976.

Station 3

205. Station 3 was located in 45-53 m of water and was part of assemblage C in the areal baseline study. The sediment was a well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.441) was moderate, indicating some seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.382) was low, indicating little change in species composition with season.

206. The density of macrofauna ranged from 612 to 5310 individuals/m² with higher values found in June 1975, September 1975, and January 1976. Diversity (H') values were high from December 1974 to June 1975 and were much lower in September 1975 and January 1976. Evenness (J') values were also low in September 1975 and January 1976. Species richness (SR) values
ranged from 7.09 to 10.40 with the highest values found in June 1975 and September 1975. Biomass values ranged from 1.12 to 2.47 g ash-free dry weight with the highest values in June 1975 and September 1975.

207. The major seasonal change in dominant species was an increase in the abundance of the polychaete *Spiophanes bombyx* in September 1975 and January 1976.

Station 4

208. Station 4 was located in 66-70 m of water and was part of assemblage A in the areal baseline study. The sediment was a well-sorted sand with 5.6 to 6.2 percent silt and clay, except for December 1974 when only 3.1 percent silt and clay were found. The sediments varied little between seasons except for the low values of silt and clay found in December 1974. The mean Bray-Curtis dissimilarity value between seasons (0.347) was low, indicating little seasonal change in the abundance of dominant macrofaunal species with season. The mean Czekanowski dissimilarity value (0.381) was also low, indicating little change in species composition with season.

209. The density of macrofauna ranged from 2530 to 4146 individuals/m² with the highest value in September 1975. The diversity (H') values were moderately high from June 1975 to January 1976 with lower values in December 1974 and April 1975. Evenness (J') values ranged from 0.47 to 0.59. Species richness (SR) values ranged from 7.57 to 12.18 with highest values in June 1975 and September 1975. Biomass values were consistently high with a range of 18.55 to 24.82 g ash-free dry weight/m².

210. The major seasonal changes in dominant species were a slight decrease in abundance of the bivalve *Acila castrensis* in June 1975, September 1975, and January 1976 and an increase in the abundance of the polychaete *Spiophanes berkeleyorum* in September 1975.

Station 6

211. Station 6 was located in 37-45 m of water and was part of assemblage B in the areal baseline study. The sediment was well-sorted sand with 17.6-24.9 percent silt. The sediment varied little seasonably except for a slight increase in percent of clay in June 1975 and September
1975. The mean Bray-Curtis dissimilarity value between seasons (0.376) was low, indicating little seasonal change in the abundance of dominant macrofaunal species with season. The mean Czekanowski dissimilarity value (0.303) was also low, indicating little change in species composition with season.

212. The density of macrofauna ranged from 1,370 to 15,670 individuals/m² with the highest values in June 1975 and September 1975. Diversity (H') values were high in January 1975, April 1975, and January 1976 and were very low in June 1975 and September 1975. The evenness (J') values were also very low in June 1975 and September 1975. Species richness (SR) values ranged from 6.13 to 8.49. Biomass values ranged from 2.53 to 25.13 g ash-free dry weight/m² and were highest from April 1975 to September 1975.

213. The major seasonal change in dominant species was the high abundance values of the cumacean Diastylopsis dawsoni in June 1975 and September 1975.

Station 10

214. Station 10 was located in 15-17 m of water and was part of assemblage D in the areal baseline study. The sediment was well-sorted sand and did not vary with season. Sediment phi-size data were not available for April 1975 at station 10. The mean Bray-Curtis dissimilarity value between seasons (0.410) was moderate, indicating some seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.378) was low, indicating little change in species composition with season.

215. The density of macrofauna ranged from 230 to 892 individuals/m² with the highest value in September 1975. Diversity (H') values ranged from 2.68 to 4.06 with the lowest value found in September 1975. The lowest evenness (J') value was also found in September 1975. Species richness (SR) values ranged from 3.79 to 5.90 with the lowest values in December 1974 and January 1975. Biomass values ranged from 0.74 to 1.80 g ash-free dry weight/m² with the highest values found in September 1975 and January 1976.

216. The major seasonal change in dominant species was an increase
in the abundance of the polychaetes *Spiophanes bombyx* and *Magelona sacculata* in September 1975.

Station 11

217. Station 11 was located in 11-13 m of water and was part of assemblage E in the areal baseline study. The sediment was a well-sorted sand. January 1975 and June 1975 sediment samples contained 3.7 percent and 5.3 percent silt and clay, while April 1975 and September 1975 contained 1.2-1.3 percent silt and clay. Station 11 was not sampled in January 1976. The mean Bray-Curtis dissimilarity value between seasons (0.561) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.428) was moderate indicating some change in species composition with season.

218. The density of macrofauna ranged from 208 to 2786 individuals/m² with the highest values in June 1975 and September 1975. Diversity (*H'*) values were moderately high from January 1975 through June 1975 and low in September 1975. Evenness (*J'*) values were high in January 1975 and April 1975, moderate in June 1975 and low in September 1975. Species richness (*SR*) values ranged from 3.66 to 5.32 with the highest value in June 1975. Biomass values ranged from 0.81 to 7.18 g ash-free dry weight/m² with the highest values in June 1975 and September 1975.

219. The major seasonal changes in dominant species were an increase in the abundance of the cumacean *Diastylopsis dawsoni* and the amphipoda *Anisogammarus confervicolus* in June 1975; the gastropoda *Olivella bipplicata* in September 1975 and an increase in the polychaetes *Spio filicornis* and *Nephtys californiensis* and the amphipoda *Monoculodes spinipes* in June 1975 and September 1975.

Station 12

220. Station 12 was located in 15-16 m of water and was part of assemblage D in the areal baseline study. The sediment was well-sorted sand and varied little with season. The mean Bray-Curtis dissimilarity value between seasons (0.565) was high, indicating considerable seasonal
change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.439) was moderate, indicating some change in species composition with season.

221. The density of macrofauna ranged from 218 to 2896 individuals/m² with the highest values in June 1975 and September 1975. Diversity (H') values ranged from 2.11 to 3.68 with the lower values in June 1975 and September 1975. Evenness (J') values followed the same pattern with the lowest values in June 1975 and September 1975. Species richness (SR) ranged from 4.67 to 5.88 with the highest value in June 1975. Biomass values ranged from 2.04 to 9.72 g ash-free dry weight/m² with the highest values in June 1975 and September 1975.

222. The major seasonal changes in dominant species were an increase in the abundance of the cumacean *Diastylopsis dawsoni* in June 1975 and an increase in the abundance of the polychaete *Spio filicornis* and the bivalve *Siliqua patula* in June 1975 and September 1975.

Station 13

223. Station 13 was located in 18-20 m of water and was part of assemblage C in the areal baseline study. The sediment was a well-sorted sand in December 1974 with 3.5 percent silt and clay. In April 1975 the sediment was a less well-sorted sand with 15.0 percent silt and clay. In June 1975 the sediment was a poorly sorted clayey silt with 87.8 percent silt and clay. In September 1975 the sediment was a poorly sorted silty sand with 39.3 percent silt and clay. No sample was obtained in January 1976.

224. The mean Bray-Curtis dissimilarity value between seasons (0.652) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.576) was also high, indicating considerable change in species composition with season.

225. The density of macrofauna ranged from 398 individuals/m² in December 1975 to 8,968 individuals/m² in April 1975 and 7,826 individuals/m² in June 1975. The density (H') values were low (1.27-2.73) with the lowest values in April 1975 and June 1975. Evenness (J') values were
also very low in April 1975 and June 1975. Species richness (SR) values ranged from 3.59 to 4.48. The biomass values increased from 2.78 g ash-free dry weight/m² in December 1975 to 30.51 g ash-free dry weight/m² in September 1975.

226. The major seasonal changes in dominant species were higher abundance values of the bivalve *Siliqua patula* in June 1975 and September 1975, the cumacean *Lamprops sp. #1* in April 1975, the cumacean *Diastylopsis dawsoni* in April 1975 and June 1975; the amphipoda *Monoculodes spinipes* in April 1975; the amphipoda *Paraphoxus milleri* in June 1975, the polychaete *Magelona sacculata* in December 1974, and the polychaete *Spio filicornis* in April 1975.

Station 14

227. Station 14 was located in 31-33 m of water and was part of assemblage D in the areal baseline. The sediment was a well-sorted sand with 1.1 percent silt and clay in December 1974. The percentage silt and clay increased to 5.2 percent in April 1975 and 5.1 percent in June 1975. In September the sediment was a poorly sorted silty sand with 29.9 percent silt and clay. In January 1976 the sediment was again a well-sorted sand with 1.4 percent silt and clay.

228. The mean Bray-Curtis dissimilarity value between seasons (0.633) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.516) was also high indicating considerable change in species composition between seasons.

229. The density of macrofauna ranged from 292 to 12,124 individuals/m² with the highest values in April 1975 and June 1975. The density \(H' \) values were low except for the 4.11 value from December 1974. The lowest values of diversity were in April 1975 and June 1975. The evenness \(J' \) values followed a similar pattern to diversity with the lowest values in April 1975 and June 1975. Species richness (SR) values ranged from 3.41 to 6.41. Biomass values ranged from 2.01 to 32.74 g ash-free dry weight/m² with the highest value in September 1975.
230. The major seasonal changes in dominant species were an increased abundance of the bivalve *Siliqua patula* in June 1975 and September 1975; a very high abundance of the cumacean *Diastylopsis dawsoni* in April 1975 and June 1975, and the high abundance of the amphipoda *Atylus tridens* in April 1975.

Station 15

231. Station 15 was located in 42-46 m of water and part of assemblage B in the areal baseline study. The sediment was well-sorted sand in December 1975 and January 1976 with 1.6 percent silt and clay in December 1974 and 5.0 percent silt and clay in January 1976. The sediments in April 1975 and September 1975 were poorly sorted silty sands with 21.0–23.3 percent silt and clay. The sediment in June 1975 was poorly sorted sandy silt with 63.3 percent silt and clay.

232. The mean Bray-Curtis dissimilarity value between seasons (0.519) was high, indicating considerable change in the abundance of most dominant macrofaunal species. The mean Czekanowski dissimilarity value (0.465) was moderate, indicating some change in species composition with season.

233. The density of macrofauna ranged from 766 to 7654 individuals/m² with higher values in April 1975 and June 1975. Diversity (H') values were moderate with lower values (2.4–2.7) in April 1975 and June 1975 and higher values (3.5–3.8) in other seasons. Evenness (J') values were also lower in April 1975 and June 1975. Species richness (SR) values ranged from 5.53 to 7.64 with higher values in April and June 1975. Biomass values ranged from 3.46 to 52.29 g ash-free dry weight/m² with June 1975 and September 1975 having values higher than 45 g ash-free dry weight/m².

234. The major seasonal changes in dominant species were an increase in the abundance of the cumacean *Diastylopsis dawsoni* in April 1975 and June 1975, an increase in the abundance of the bivalve *Siliqua patula* in April 1975 through September 1975, and the high abundance of the amphipoda *Atylus tridens* in April 1975.

Station 16

235. Station 16 was located in 31–37 m of water and was part of
assemblage B in the areal baseline study. The sediment was a poorly sorted silty sand in December 1974 and April 1975 with 34.2-37.1 percent silt and clay. The percentage silt and clay increased to 82.9 to 89.2 percent in the poorly sorted sandy silt sediment found in June 1975 and September 1975. The sediment was a well-sorted sand with 8.6 percent silt and clay in January 1976.

236. The mean Bray-Curtis dissimilarity value between seasons (0.579) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.455) was moderate, indicating some change in species composition with season.

237. The density of macrofauna ranged from 2300 to 27,782 individuals/m² with the highest value in April 1975. The diversity (H') values were low (0.39-2.38) except in January 1975 when the diversity was 3.66. The evenness (J') values were also low (0.07-0.45) except in January 1975. Species richness (SR) values ranged from 4.15 to 6.67. The biomass values ranged from 4.36 to 118.30 g ash-free dry weight/m² with very high values in June 1975 and September 1975.

238. The major seasonal changes in dominant species were the low abundance of the cumacean Diastylopsis dawsoni in December 1974 and high abundance of the bivalve Siliqua patula in June 1975 and September 1975.

Station 17

239. Station 17 was located in 31-33 m of water and was part of assemblage B in the areal baseline. The sediment changed considerably with season with a range of 14.5 to 78.2 percent silt and clay. In January 1975, April 1975, and January 1976 the sediment was a well sorted silty sand with 14.5-26.7 percent silt and clay of which 1.6-2.7 percent was clay. In June 1975 the sediment was a poorly sorted clayey sand with 21.8 percent clay and in September 1975 the sediment was a poorly sorted sandy silt with 78.2 percent silt and clay.

240. The mean Bray-Curtis dissimilarity value between seasons (0.542) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.463) was moderate, indicating some seasonal change in species composition.
The density of macrofauna ranged from 950 to 26,320 individuals/m² with the highest value in April 1975. Diversity (H') values were low with the highest value in January 1975 (3.00) and the values for other seasons ranging from 0.33 to 2.17. Evenness (J') values were also low with the highest values in January 1975 and September 1975. Species richness (SR) values ranged from 3.97 to 6.49. Biomass values were high in June 1975 and September 1975 with 23.97 and 29.78 g ash-free dry weight/m², respectively. The range of biomass values for January 1975, April 1975 and January 1976 was 1.68-5.13 g ash-free dry weight/m².

The major seasonal changes in dominant species were an increase in the abundance of the bivalve *Siliqua patula* in June 1975 and September 1975, and the very high abundance of the cumacean *Diastylopsis dawsoni* in April 1975 and high abundance in June 1975 and January 1976. Station 18

Station 18 was located in 40-46 m of water and was part of assemblage C in the areal baseline study. The sediment was a well-sorted sand during all seasons. The percentage silt and clay was low (1.5-2.1 percent) in December 1974 and January 1976 and was higher April 1975 through September 1975 (5.1-12.1 percent).

The mean Bray-Curtis dissimilarity values between seasons (0.479) was moderate, indicating some change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.424) was moderate, indicating some change in species composition with season.

The density of macrofauna ranged from 734 to 3502 individuals/m² with the highest value in September 1975. The diversity (H') values were high in December 1974 through June 1975 with a slight decrease in September 1975 and January 1976. The evenness (J') values followed the same pattern as diversity. The species richness (SR) values ranged from 6.90 to 10.45 with the highest values found in June 1975 and September 1975. The biomass values were low with a range of 1.24-2.92 g ash-free dry weight/m².

The major seasonal change in dominant species was an increase
in the abundance of the polychaetes *Spiophanes bombyx* and *Spiophanes berkeleyorum* in September 1975.

Station 19

247. Station 19 was located in 29-31 m of water and was part of assemblage C in the areal baseline study. The sediment was a well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.404) was moderate, indicating some change in the abundance of most dominant macrofauna species with season. The mean Czekanowski dissimilarity values between seasons (0.351) was low, indicating little change in species composition with season.

248. The density of macrofauna ranged from 442 to 2714 individuals/m² with the highest value in September 1975. The diversity (H') values were high December 1974 through June 1975 and lower in September 1975. The evenness (J') values followed the same pattern with the lowest value in September 1975. The species richness (SR) values ranged from 4.72 to 8.48. The biomass values ranged from 1.06 to 2.30 g ash-free dry weight/m² with the highest values in June 1975 and September 1975.

249. The major seasonal change in dominant species was an increase in the abundance of the polychaete *Spiophanes bombyx* in September 1975.

Station 20

250. Station 20 was located in 22-24 m of water and was part of assemblage D in the areal baseline study. The sediment was a well sorted sand, which varied little with season (1.0-1.1 percent silt and clay) except in June 1975 when 5.2 percent silt and clay were present.

251. The mean Bray-Curtis dissimilarity value between seasons (0.539) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.469) was moderate, indicating some seasonal change in species composition.

252. The density of macrofauna ranged from 184 to 1682 individuals/m² with the highest value in September 1975. Diversity (H') values were moderately high from January 1975 to June 1975 and lower in September 1975 and January 1976. The evenness (J') values were also lowest in September 1975 and January 1976. The species richness (SR)
values ranged from 2.88 to 6.34 with the highest values from April 1975 to September 1975. Biomass values ranged from 1.31 to 3.18 g ash-free dry weight/m2 with the highest values in June 1975 and September 1975.

253. The major seasonal change in dominant species was an increase in the abundance of the polychaete Spiophanes bombyx in June 1975 and September 1975.

Station 21

254. Station 21 was located in 17-21 m of water and was part of assemblage E in the areal baseline study. The sediment was a well-sorted sand in December 1974 and April 1975 with 1.3-1.6 percent silt and clay. The percentage silt and clay was 16.9 percent in June 1975 and 7.0 percent in September 1975. No sample was obtained in January 1976.

255. The mean Bray-Curtis dissimilarity between seasons (0.588) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.430) was moderate, indicating some seasonal change in species composition.

256. The density of macrofauna ranged from 56 to 832 individuals/m2. The diversity (H') was moderately high in April 1975 and September 1975 and low in January 1975 and June 1975. Evenness (J') values followed the same pattern as diversity. Species richness (SR) ranged from 2.49 to 4.39. Biomass ranged from 0.16 to 1.14 with the highest values in June 1975.

257. The major seasonal changes in dominant species were the high abundance of the polychaete Spio filicornis in January 1975 and June 1975; the increased abundance of the mysid Archeomysis grebnitzkii in April 1975 and June 1975, and the single high values of the amphipoda Paraphoxus obtusidens major in April 1975, the polychaetes Eteone sp. #6 and Capitellidae sp. #1 and Nemertea sp. #5 in June 1975.

Station 22

258. Station 22 was located in 22-33 m of water and was not part of any assemblage in the areal baseline study. Station 22 had the highest affinity with assemblage B. The sediment at station 22 varied considerably with season and was often layered. In December 1974, a well-
sorted sand layer with 10.8 percent silt and clay covered a poorly sorted sandy silt layer with 79.3 percent silt and clay. In April 1975 the same well-sorted sand layer with 11.7 percent silt and clay was found with no other layers. In June 1975 a poorly sorted sandy silt layer with 76.7 percent silt and clay covered a well-sorted silty sand layer with 20.8 percent silt and clay. In September 1975, the sediment was a well-sorted silty sand with 27.4 percent silt and clay. In January 1976 the sediment was a well-sorted sand with 14 percent silt and clay.

259. The mean Bray-Curtis dissimilarity value between seasons (0.600) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.485) was moderate, indicating some change in species composition with season.

260. The density of macrofauna ranged from 716 to 43,802 individuals/m² with the highest values in January 1975 through June 1975. The diversity (H') values were low and ranged from 0.17 to 2.62. The lowest diversity values were found in January 1975 and April 1975. The evenness (J') values followed the same pattern with very low values in January 1975 and April 1975. Species richness (SR) values ranged from 3.13 to 4.59. Biomass values ranged from 4.37 to 62.02 g ash-free dry weight/m² with the highest value in September 1975.

261. The major seasonal changes in dominant species were a decrease in the abundance of the cumacean *Diastyllopsis dawsoni* in September 1975 and January 1975 and the high abundance of the bivalve *Siliqua patula* in June 1975 and September 1975.

Station 23

262. Station 23 was located in 27-31 m of water and was part of assemblage B in the areal baseline study. The sediment was a well-sorted sand and silty-sand with 10.1 to 29.3 percent silt and clay.

263. The mean Bray-Curtis dissimilarity value between seasons (0.379) was low, indicating little change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.273) was also low, indicating little change in species composition with season.
264. The density of macrofauna ranged from 910 to 4392 individuals/m² with the highest values in June 1975 and September 1975. The diversity (H') values were high (3.42 to 4.33) except for the 2.22 diversity value for September 1975. Evenness (J') values were also high except for September 1975. The species richness (SR) values ranged from 5.46 to 7.78 with higher values from January 1975 through June 1975. The biomass values ranged from 1.73 to 13.67 g ash-free dry weight/m² with the highest values from June 1975 through January 1976.

265. The major seasonal changes in dominant species were an increase in the abundance of the cumacean *Diastylopsis dawsoni* in June 1975 and September 1975 and an increase in the abundance of the polychaete *Spiophanes bombyx* from June 1975 through January 1976.

Station 24

266. Station 24 was located in 24-27 m of water and was part of assemblage C in the areal baseline study. The sediment was a very well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.433) was moderate, indicating some change in the abundance of dominant species with season. The mean Czekanowski dissimilarity values between seasons (0.331) was low, indicating little change in species composition with season.

267. The density of macrofauna ranged from 334 to 2692 individuals/m² with the highest value in September 1975. The diversity (H') values were high January 1975 through June 1975 (range 3.33 to 4.33) and lower in September 1975 and January 1976. The evenness (J') values were also low in September 1975 and January 1976. The species richness (SR) values ranged from 5.16 to 7.10 with the highest values April 1975 through September 1975. The biomass values ranged from 1.41 to 1.89 g ash-free dry weight/m².

268. The major seasonal change in dominant species was an increase in the abundance of the polychaete *Spiophanes bombyx* in June 1975 through January 1976.

Station 25

269. Station 25 was located in 15-18 m of water and was part of assemblage C in the areal baseline study. The sediment was a well-sorted
sand with 1.7 percent silt and clay in January 1975. In April 1975 the percentage silt and clay increased to 3.5 percent. In June 1975 the sediment was a silty sand with 28.2 percent silt and clay. In September 1975 the sediment was a poorly sorted silty clay with 38.2 percent silt and clay.

270. The mean Bray-Curtis dissimilarity value between seasons (0.601) was high, indicating considerable change in the abundance of dominant macrofaunal species with season. The mean Czekanowski dissimilarity values between seasons (0.467) were moderate, indicating some change in species composition with time.

271. The density of macrofauna ranged from 302 to 9454 individuals/m² with the highest value in June 1975. Diversity (H') values ranged from 1.27 to 3.36 with the lowest value in June 1975. The evenness (J') values followed the same pattern as diversity with the lowest value in June 1975. Species richness (SR) values ranged from 4.19 to 5.67. Biomass values ranged from 3.24 to 17.40 g ash-free dry weight/m² with the highest values in June 1975 and September 1975.

272. The major seasonal changes in dominant species were an increase in abundance of the bivalve *Siliqua patula* in June 1975 and September 1975, an increase in the abundance of the cumacean *Diastylopsis dawsoni* in June 1975, and high abundance of the polychaete *Spio filicornis* in September 1975.

Station 26

273. Station 26 was located in 20-22 m of water and was part of assemblage C in the areal baseline study. The sediment was a well-sorted sand in January 1976 with 1.2 percent silt and clay. In April 1975 the sediment was a poorly sorted sand with 16.1 percent silt and clay. In June 1975 and September 1975, the sediment was a poorly sorted silty sand with 48.1 to 52.4 percent silt and clay. Station 26 was not sampled in January 1976.

274. The mean Bray-Curtis dissimilarity value between seasons (0.535) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity values between seasons (0.458) was moderate, indicating some change in species composition with time.
275. The density of macrofauna ranged from 562 to 2894 individuals/m² with the highest values from April 1975 through September 1975. Diversity (H') values were low (1.38-1.90) except for the moderate value from January 1975 (2.86). Evenness (J') values were also low except for a moderate value in January 1975. Species richness values ranged from 3.56 to 4.67. Biomass values ranged from 4.27 to 53.93 g ash-free dry weight/m² with the highest value in September 1975.

276. The major seasonal changes in dominant species were an increase in the abundance of the bivalve *Siliqua patula* in June 1975 and September 1975 and the low abundance of the cumacean *Diastylopsis dawsoni* in January 1975.

Experimental Site G

277. The experimental site was located in 25-30 m of water south of the mouth of the Columbia River (46° 11.5'N, 124° 6.0'W). The substrate prior to disposal of dredged material was a well-sorted sand (Md φ = 3.0 φ). Between 9 July and 27 August 1975, approximately 460,000 m³ of dredged material was deposited on experimental site G. The material was dredged from the mouth of the Columbia River and was a coarser sand than the ambient substrate with a high percentage of 2.0-2.5 φ size particles. The dredged material formed a circular deposit with a radius of 456 m and a maximum elevation of 1.5 m (Sternberg et al., 1977).

278. The experimental site was sampled on three cruises prior to disposal and on five cruises after the disposal of dredged material. The stations which were located in the experimental site or nearby for control (Figure C24) are listed in Table C2. The following sections describe the structure of benthic communities and distribution of station groups for each sampling period.

December 1974-January 1975

279. The six stations located near experimental site G were part of assemblage C in the areal baseline study. The six stations fused at 0.33 Bray-Curtis units to form one station group (Figure C26). The dominant species were the polychaete *Magelona sacculata* (BI = 9.50),
the amphipoda *Eohaustorius sencillus* (8.83), the polychaete *Spiophanes bombyx* (8.51), the polychaete *Chaetozone setosa* (5.42), and the ophuroid *Amphiodia periercta-urtica* (5.08).

280. The diversity (H') values were high (3.33-4.32) with moderate species richness (SR) values (5.47-8.45) and high evenness (J') values (0.68 to 0.80). The density of macrofauna (334-560 individuals/m²) and the biomass (0.61-1.93 g ash-free dry weight/m²) were low.

April 1975

281. In April 1975 two stations were located in the experimental site G region (R-19, R-24). The two stations fused at 0.28 Bray-Curtis units. Dominant species were the amphipoda *Eohaustorius sencillus* (BI = 9.00), the polychaete *Magelona sacculata* (7.75), the amphipoda *Monoculodes spinipes* (7.25), and the polychaete *Spiophanes bombyx* (6.50). The diversity (H') values were high (4.24 and 4.34) with moderate species richness (SR) values (5.79 and 6.02) and high evenness (J') values (0.85 and 0.86). The density of macrofauna (348 and 422 individuals/m²) and biomass (1.05 and 1.41 g ash-free dry weight/m²) were low.

June 1975

282. In June 1975 eight stations were located in the experimental site region. The eight stations fused at 0.31 Bray-Curtis units to form one station group (Figure C40). Dominant species included the polychaete *Spiophanes bombyx* (BI = 10.0), the amphipoda *Paraphoxus obtusidens major* (8.37), the polychaete *Magelona sacculata* (8.13), and the amphipoda *Eohaustorius sencillus* (5.88).

283. The diversity (H') values ranged from 2.75 to 4.51 with the highest evenness (J') values (0.52-0.79) corresponding to the highest diversity values. Species richness (SR) values (6.30-8.48) were moderate. The density of macrofauna ranged from 629 to 920 individuals/m². Biomass values were slightly higher than in April 1975 with a range of 1.05-2.58 g ash-free dry weight/m².

September 1975

284. In September 1975, 26 stations were sampled at or near the experimental site. The location, description, and fate of the dredged material deposited on experimental site G were described by Sternberg.
et al. (1977). The twenty-six stations formed three station groups (Figure C41). Stations K-16, K-31, and R-27, all near the center of the disposal area formed one station group (F₁) and were fused at 0.25 Bray-Curtis units. Stations K-9, K-14, K-18, K-22, and K-38, located in a circle around station group F₁, formed the second station group (G₁) and were fused at 0.27 Bray-Curtis units. The remaining 18 stations formed the third station group (H₁) and fused at 0.27 Bray-Curtis units. Station group G₁ and H₁ were closely related and fused at 0.29 Bray-Curtis units. Station group F₁ fused with station groups G₁ and H₁ at 0.40 Bray-Curtis units.

285. The rank order of the nine most dominant species in station groups G₁ and H₁ was the same (Table C35). Station group F₁ had higher dominance of the cumacean Hemilamprops californiensis and the amphipoda Synchelidium rectipalmumi and a lower dominance of the amphipods Paraphoxus obtusidens major and Eohaustorius sencillus when compared to station groups G₁ and H₁. The overall dominant species were the polychaete Spiophanes bombyx (BI = 9.92), the polychaete Magelona sacculata (8.39), the cumacean Diastylopsis dawsoni (7.19), the amphipoda Paraphoxus obtusidens major (5.41), the polychaete Haploscoloplos elongatus (5.43), and the amphipoda Eohaustorius sencillus (4.16).

286. The density of macrofauna was highest (2308-6950 individuals/m²) at station group H₁, lower at station group G₁ (1196-2350 individuals/m²), and much lower at station group F₁ (572-752 individuals/m²). If the polychaete Spiophanes bombyx were excluded, station group H₁ would still have a higher density (range 500-1070; mean, 736 individuals/m²) followed by station group G₁ (range 500-798; mean, 638 individuals/m²) and station group F₁ (range 486-534; mean, 512 individuals/m²). The range of biomass values was 1.35-4.15 g ash-free dry weight/m². Station group H₁ had a mean biomass value of 2.72, followed by station group F₁ (2.48) and station group G₁ (2.04).

287. The diversity (H') values were higher at station group F₁ (range 3.75-4.07) than station group G₁ (range 2.41-3.19) and much higher than station group H₁ (range 1.42-2.07). Evenness (J') values followed the same pattern with the highest values in station group F₁.
Figure C41. Dendrogram of Dissimilarity Between Stations—Experimental
Site G (C7509E)
Table C35

Dominant Species (BI) Near Experimental Site G September 1975.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>H₁</th>
<th>G₁</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>10.00</td>
<td>10.00</td>
<td>9.33</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>8.11</td>
<td>8.60</td>
<td>9.67</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>6.97</td>
<td>7.50</td>
<td>8.00</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>5.56</td>
<td>6.30</td>
<td>3.00</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>4.92</td>
<td>6.30</td>
<td>7.00</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>4.28</td>
<td>4.30</td>
<td>2.67</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>2.77</td>
<td>4.00</td>
<td>3.50</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>2.11</td>
<td>2.40</td>
<td>1.17</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>1.97</td>
<td>0.20</td>
<td>1.33</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>1.72</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>1.39</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>256</td>
<td>Glycinde sp. #2</td>
<td>1.30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>1.25</td>
<td>0.40</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>Hemilamprops californiensis</td>
<td>1.28</td>
<td>1.20</td>
<td>2.30</td>
</tr>
<tr>
<td>133</td>
<td>Synchelidium rectiphmumi</td>
<td>-</td>
<td>0.20</td>
<td>4.50</td>
</tr>
</tbody>
</table>
(range 0.70-0.77) followed by station group G_1 (range 0.45-0.59) and station group H_1 (range 0.26-0.40). The species richness (SR) values ranged from 5.11 to 7.43 with a mean value of 6.73 in station group F_1, 6.58 in station group G_1, and 6.26 in station group H_1.

October 1975

288. In October 1975, 13 stations were sampled at or near the experimental site. The 13 stations formed three station groups (Figure C42). Stations that were part of station groups F_1 and G_1 in September 1975 were all joined in October 1975 to form one station group (F_2) that included stations K-16, K-18, K-22, K-31, and R-27. These five stations joined at 0.36 Bray-Curtis units. Stations that were part of station group H_1 in September 1975 fused at 0.31 Bray-Curtis units in October 1975. These stations were further divided into station group I_2 that included stations R-24, R-28, R-29 and R-31 and fused at 0.24 Bray-Curtis units, and station group G_2 that included stations K-7, K-11, K-26, and R-33 and fused at 0.28 Bray-Curtis units. All stations fused at 0.48 Bray-Curtis units.

289. The rank order of the four most dominant species was the same at all station groups (Table C36). Station group G_2 had a higher dominance value for the gastropoda *Olivella baetica* than station group I_2 and a higher dominance value for the amphipoda *Paraphoxus obtusidens major* than either station group F_2 or I_2. Station group F_2 also had a higher dominance value for the gastropoda *Olivella baetica* than station group I_2 and had higher dominance values for the gastropoda *Olivella pycna* and the polychaete *Spio filicornis* than either station group I_2 or G_2. The overall dominant species were the polychaete *Spiophanes bombyx* (DI = 9.79), the polychaete *Magelona sacculata* (8.77), the amphipoda *Eohaustorius sencillus* (7.62), and the polychaete *Chaetozone setosa* (6.31).

290. The density of macrofauna was highest (2242-4202 individuals/m²) at station group I_2, followed by station group G_2 (932-1406 individuals/m²), and station group F_2 (242-422 individuals/m²). If the polychaete *Spiophanes bombyx* were excluded, the same pattern of density
Figure C42. Dendrogram of Dissimilarity Between Stations—Experimental Site G (C7510R)
Table C36

Dominant Species (BI) Near Experimental Site G October 1975.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>(I_2)</th>
<th>(G_2)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>10.00</td>
<td>10.00</td>
<td>9.46</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>8.50</td>
<td>8.50</td>
<td>9.20</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>8.50</td>
<td>8.00</td>
<td>6.60</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>5.00</td>
<td>6.50</td>
<td>7.20</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>4.12</td>
<td>4.38</td>
<td>2.90</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>3.00</td>
<td>2.25</td>
<td>1.50</td>
</tr>
<tr>
<td>256</td>
<td>Glycind sp. #2</td>
<td>2.63</td>
<td>-</td>
<td>0.20</td>
</tr>
<tr>
<td>471</td>
<td>Nemertea sp. #7</td>
<td>2.25</td>
<td>1.00</td>
<td>0.20</td>
</tr>
<tr>
<td>341</td>
<td>Scoloplos armiger</td>
<td>1.88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>1.75</td>
<td>4.88</td>
<td>4.00</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>1.75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>1.63</td>
<td>4.50</td>
<td>1.10</td>
</tr>
<tr>
<td>408</td>
<td>Glycinde picta</td>
<td>1.63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>-</td>
<td>1.38</td>
<td>4.50</td>
</tr>
<tr>
<td>343</td>
<td>Spiio filicornis</td>
<td>-</td>
<td>-</td>
<td>3.20</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia perierctica-urtica</td>
<td>0.25</td>
<td>1.75</td>
<td>1.10</td>
</tr>
</tbody>
</table>
would be found with the highest density of macrofauna at station group I_2 (range 456-638; mean, 544 individuals/m²), followed by station group G_2 (range 366-448; mean, 405 individuals/m²), and station group F_2 (range 188-308; mean, 246 individuals/m²). The range of biomass values was 0.41-2.88 g ash-free dry weight/m² with station groups G_2 (mean, 1.82 g ash-free dry weight/m²) and I_2 (mean, 2.21 g ash-free dry weight/m²) having the highest biomass values. Station group F_2 (range 0.41-1.29; mean, 1.020 g ash-free dry weight/m²) had lower biomass values.

The diversity (H') values were highest at station group F_2 (3.08-3.58), followed by lower values at station group G_2 (1.89-2.59) and the lowest values at station group I_2 (1.29-1.60). Evenness (J') values followed the same pattern with highest values in station group F_2 (0.60 to 0.80) followed by station group G_2 (0.40-0.51) and the lowest values in station group I_2 (0.25-0.34). The species richness (SR) values ranged from 3.99 to 5.63 with slightly lower values found in station group F_2 (mean, 4.58) when compared to station group G_2 (mean, 4.96) and station group I_2 (mean, 5.15).

January 1976

In January 1976, 11 stations were sampled at or near the experimental site. The 11 stations formed three station groups (Figure C43). Three stations (K-18, K-22, and K-31) that are part of station Group F_2 in October 1975 and one station (K-7) from station group G_2 joined at 0.39 Bray-Curtis units to form station group F_3. Three stations (R-24, R-28, and R-31) that were part of station group I_2 in October 1975 and station R-19 (not sampled in October 1975) fused at 0.32 Bray-Curtis units to form station group I_3. Three stations (K-11, K-26, and R-33) that were part of station group G_2 in October 1975 fused at 0.31 Bray-Curtis units to form station group G_3. Station groups G_3 and I_3 fused at 0.39 Bray-Curtis units and then fused with station group F_3 at 0.50 Bray-Curtis units.

The rank order of the three most dominant species was the same in station groups G_3 and I_3 (Table C37). Station group I_3 had a higher dominance of the amphipoda *Amphelisca macrocephala* than the other.
Figure C43. Dendrogram of Dissimilarity Between Stations—Experimental Site (C7601D)
<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>I<sub>3</sub></th>
<th>G<sub>3</sub></th>
<th>F<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>10.00</td>
<td>10.00</td>
<td>5.75</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>8.00</td>
<td>8.67</td>
<td>9.75</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>7.75</td>
<td>8.33</td>
<td>5.12</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>5.25</td>
<td>4.83</td>
<td>2.38</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozo paste</td>
<td>4.75</td>
<td>7.00</td>
<td>8.00</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>4.25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>2.63</td>
<td>3.50</td>
<td>2.00</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>2.25</td>
<td>3.00</td>
<td>6.00</td>
</tr>
<tr>
<td>141</td>
<td>Paraphoxus vigilatetus</td>
<td>2.25</td>
<td>0.33</td>
<td>-</td>
</tr>
<tr>
<td>471</td>
<td>Nemerte sp. #7</td>
<td>1.75</td>
<td>1.16</td>
<td>0.25</td>
</tr>
<tr>
<td>310</td>
<td>Northria iridescens</td>
<td>1.00</td>
<td>2.50</td>
<td>-</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia perierctta-urtica</td>
<td>1.00</td>
<td>1.83</td>
<td>0.88</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>0.75</td>
<td>2.13</td>
<td>3.25</td>
</tr>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>-</td>
<td>-</td>
<td>3.88</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>-</td>
<td>-</td>
<td>1.50</td>
</tr>
</tbody>
</table>
station groups. Station group G₃ had a greater dominance of the polychaete Chaetozone setosa than station group I₃. The polychaetes Spiophanes bombyx and Nephtys caecoides and the amphipoda Eohaustorius sencillus were less dominant in station group F₃ than the other station groups. The polychaete Chaetozone setosa and the gastropoda Olivella pycna were more dominant in station group F₃ than station group I₃ and the gastropod Olivella biplicata was more dominant in station group F₃ than other station groups. The overall dominant species were the polychaete Spiophanes bombyx (BI = 8.45), the polychaete Magelona sacculata (8.82), the amphipoda Eohaustorius sencillus (6.95), the polychaete Chaetozone setosa (6.55), and the polychaete Nephtys caecoides (4.09).

294. The density of macrofauna was highest in station group I₃ (range 750-1618; mean, 1234 individuals/m²), followed by station group G₃ (range 338-554; mean 473 individuals/m²), and lowest at station group F₃ (range 148-350; mean, 230 individuals/m²). If Spiophanes bombyx was not included, the density values would follow the same pattern with highest density values at station group I₃ (mean, 380 individuals/m²), followed by station group G₃ (mean, 300 individuals/m²), and the lowest values at station group F₃ (mean, 207 individuals/m²). The biomass values ranged from 1.10 to 2.79 g ash-free dry weight/m² with slightly higher values at station group G₃ (mean, 1.91) than at station groups I₃ (mean, 1.39) and F₃ (mean, 1.45).

295. The diversity (H') values were highest at station group F₃ (range 2.97-3.74; mean, 3.25) and station group G₃ (range 3.07-3.46; mean, 3.25), and lowest at station group I₃ (range 1.80-3.07; mean, 2.24). The evenness (J') values followed the same pattern with high values at station groups F₃ (mean, 0.74) and G₃ (mean, 0.68) and lower values at station group I₃ (mean, 0.45). Species richness (SR) values ranged from 3.64 to 5.69 with slightly higher values at station groups G₃ (mean, 4.94) and I₃ (mean, 4.95) than station group F₃ (mean, 4.29).

April 1976

296. In April 1976, 12 stations were sampled at or near experimental site G. The 12 stations formed two station groups (Figure C44).
Figure C44. Dendrogram of Dissimilarity Between Stations—Experimental Site G (C7604B)
Stations (R-24, R-28, and R-31) that were part of station groups I_2 in October and I_3 in January 1976 together with station R-33 that was part of station group G_2 in October 1975 and G_3 in January 1976 fused at 0.29 Bray-Curtis units to form station group I_4. The remaining eight stations that were part of station groups F_1 and G_1 in September 1975, F_2 and G_2 in October 1975 and F_3 and G_3 in January 1976, fused at 0.42 Bray-Curtis units to form station group F_4. Station groups F_4 and I_4 fused at 0.52 Bray-Curtis units.

297. The polychaete Spiophanes bombyx, which was the dominant species at station group I_4, was not dominant at Station group F_4 (Table C38). The amphipoda Ampelisca macrocephala and the polychaete Glycinde sp. #2 had lower dominance values in station group F_4 when compared to station group I_4. The following species had higher dominance values at station group F_4: the polychaete Spio filicornis, the mysid Archeomysis grebnitzkii, and the gastropoda Olivella pycna. The overall dominant species were the polychaete Magelona sacculata (BI = 8.84), the amphipoda Paraphoxus obtusidens major (7.86), the polychaete Chaetozone setosa (6.83), and the amphipoda Eohaustorius sencillus (5.38).

298. The density of macrofauna was higher at station group I_4 (range 746-2088; mean, 1349 individuals/m²) than at station group F_4 (range 172-308; mean, 248 individuals/m²). If Spiophanes bombyx were excluded, the density of macrofauna would still be higher at station group I_4 (mean, 528 individuals/m²) than station group F_4 (mean, 241 individuals/m²). The biomass values ranged from 0.44 to 2.72 g ash-free dry weight/m², with slightly higher values at station group I_4 (mean, 1.66) compared to station group F_4 (mean, 1.23).

299. The diversity (H') values were higher at station group F_4 (range 3.71-4.15; mean, 3.99) than at station group I_4 (range 2.21-3.84; mean, 2.96). Evenness (J') values were also higher at station group F_4 (mean, 0.84) than station group I_4 (mean, 0.55). Species richness (SR) values were higher at station group I_4 (range 6.33-7.14; mean, 6.65) than station group F_4 (range 4.97-6.12; mean, 5.45).
Table C38

Dominant Species (BI) Near Experimental Site G April 1976.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>STATION GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>10.00</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>7.75</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>6.88</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>6.25</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>5.38</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>3.88</td>
</tr>
<tr>
<td>310</td>
<td>Northria iridescens</td>
<td>3.75</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>3.13</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>3.00</td>
</tr>
<tr>
<td>256</td>
<td>Glycinde sp. #2</td>
<td>2.13</td>
</tr>
<tr>
<td>341</td>
<td>Scoloplos armiger</td>
<td>1.38</td>
</tr>
<tr>
<td>8</td>
<td>Olivella pycna</td>
<td>-</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>0.25</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>-</td>
</tr>
<tr>
<td>343</td>
<td>Spio filicornis</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>Archeonymis grebnitzkii</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>-</td>
</tr>
</tbody>
</table>

164
June 1976

300. In June 1976, 12 stations were sampled at or near experimental site G. The 12 stations formed two station groups as in April 1976 (Figure C45). Stations (K-24, R-28, R-31, and R-33) that were part of station group I_4 and station K-11 fused at 0.27 Bray-Curtis units to form station group I_5. The remaining seven stations fused at 0.28 Bray-Curtis units to form station group F_5. Station groups I_5 and F_5 fused at 0.35 Bray-Curtis units.

301. The polychaete Spiophanes bombyx was not as dominant at station group F_5 as I_5 (Table C39). The cumacean Hemilamprops californiensis and the amphipoda Photis lacia were also more dominant at station group I_5. The amphipoda Paraphoxus obtusidens major was more dominant at station group F_5 than I_5. The overall dominant species were the polychaete Spiophanes bombyx (BI = 9.41), the amphipoda Paraphoxus obtusidens major (8.37), the polychaete Magelona sacculata (7.25), the polychaete Haploscoloplos elongatus (5.67), and the polychaete Chaetozone setosa (5.45).

302. The density of macrofauna was higher in station group I_5 (range 896-1446; mean, 1156 individuals/m²) than station group F_5 (488-748; mean, 656 individuals/m²). If the polychaete Spiophanes bombyx were excluded, the density of macrofauna would still be higher in station group I_5 (mean, 744 individuals/m²) than station group F_5 (mean, 656 individuals/m²). The biomass values were slightly higher in station group I_5 (range 1.37-2.53; mean, 2.14 g ash-free dry weight/m²) than station group F_5 (range 0.99-2.28; mean, 1.42 g ash-free dry weight/m²).

303. The diversity (H') values were the same in station group I_5 (mean, 3.95) as station group F_5 (mean, 3.85). Evenness (J') values were also the same in both station groups. The species richness (SR) values were slightly higher in station group I_5 (range 6.79-8.31; mean, 7.40) when compared to station group F_5 (range 5.99-7.15; mean, 6.59).
Figure C45. Dendrogram of Dissimilarity Between Stations-Experimental Site G (C7606B)
Table C39

Dominant Species (BI) Near Experimental Site G June 1976.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>STATION GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>I₅</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>6.50</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>6.30</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>5.70</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>5.50</td>
</tr>
<tr>
<td>96</td>
<td>Hemilamprops californiensis</td>
<td>4.60</td>
</tr>
<tr>
<td>158</td>
<td>Photis lacia</td>
<td>3.80</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>3.40</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>2.30</td>
</tr>
<tr>
<td>95</td>
<td>Mesolamprops sp. #1</td>
<td>2.00</td>
</tr>
<tr>
<td>345</td>
<td>Spiophanes berkeleyorum</td>
<td>1.20</td>
</tr>
<tr>
<td>310</td>
<td>Northria iridescens</td>
<td>0.80</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>0.80</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>0.60</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>0.20</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>-</td>
</tr>
<tr>
<td>341</td>
<td>Scoloplos armiger</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>-</td>
</tr>
<tr>
<td>298</td>
<td>Notomastus lineatus</td>
<td>-</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>-</td>
</tr>
</tbody>
</table>
Megafaunal Survey

304. The 67 metered beam trawls were separated into four site groups using group-average sorting of Bray-Curtis dissimilarity between all possible pairs of stations (Figure C46). One sample was not included in any site group. Twenty-three species were separated into five species groups by group-average sorting of Bray-Curtis dissimilarity values between all species pairs (Figure C47). Seven species were not included in any species group.

305. Site group A included 35 samples that were obtained from inshore locations on all cruises. The samples were dominated by the decapods Crangon alaskensis elongata (BI = 3.11, 5 maximum value), Crangon stylirostris (2.94), Crangon franciscorum (2.57), Cancer magister (2.34), and the mysid Neomysis kadiakensis (1.69). Site group B included four samples obtained near experimental site G during October 1975 and December 1974. All samples had low abundance of individuals and few species. The dominant species was the decapoda Crangon stylirostris. Site group C included 19 samples that were located at intermediate depths (35-73 m) in the southern portion of the study area. The dominant species was the decapoda Crangon alaskensis elongata (BI = 5.00). The decapods Pagurus ochotensis (1.37), Nectocrangon alaskensis (1.31), the mysid Neomysis kadiakensis (1.26), and the ophiuroid Ophiura lutkeni (1.10) were common. Site group D consisted of eight samples, six of which came from the same location (-46° 9'N, 124° 13'W) in 80-90 m of water and two samples in 57 m of water north of that site. Dominant species included the ophiuroid Ophiura lutkeni (BI = 3.75), the decapods Pandalus jordani (2.87), Crangon alaskensis elongata (2.37), Crangon communis (1.62), followed by the ophiuroid Ophiura sarsii (1.25), the mysid Neomysis kadiakensis, and the decapods Spirotocaris avina (0.63), and Thysanoessa spinifera (0.63).

306. The 30 species were divided into 5 species groups (Table C40). Species group 1 consisted of nine species that were found at site group D and the deeper locations in site group C. The depth range for most of
Figure C46. Dendrogram of Dissimilarity Between Megafaunal Stations. C46
Figure C47. Dendrogram of Dissimilarity Between Megafaunal Species
Table C40

Megabenthic Species Groups.

<table>
<thead>
<tr>
<th>Species Group 1</th>
<th>Species Group 2</th>
<th>Species Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>91 Ophiura sarsi</td>
<td>561 Spirotocaris avina</td>
<td>217 Cancer magister</td>
</tr>
<tr>
<td>550 Crangon communis</td>
<td>563 Spirotocaris bispinosa</td>
<td>520 Crangon franciscorum</td>
</tr>
<tr>
<td>553 Crangon sp. #1</td>
<td></td>
<td>204 Crangon stylirostris</td>
</tr>
<tr>
<td>206 Spirotocaris gracilis</td>
<td></td>
<td>3 Nassarius fossatus</td>
</tr>
<tr>
<td>416 Arminia californica</td>
<td></td>
<td>8 Olivella biplicata</td>
</tr>
<tr>
<td>86 Ophiura lutkeni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565 Spirotocaris lamellicornis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554 Nectocrangon alaskensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>568 Thysanoessa spinifera</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species Group 3</th>
<th>Species Group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>558 Pandalus jordani</td>
<td>210 Pagurus ochotensis</td>
</tr>
<tr>
<td>566 Spirotonocaris pusiola</td>
<td>212 Pagurus quayleyi</td>
</tr>
<tr>
<td></td>
<td>203 Crangon alaskensis elongatus</td>
</tr>
<tr>
<td></td>
<td>570 Luidia foliolata</td>
</tr>
<tr>
<td></td>
<td>112 Neomysis kadiakensis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species not grouped</th>
</tr>
</thead>
<tbody>
<tr>
<td>513 Pagurus caurinus</td>
</tr>
<tr>
<td>111 Neomysis franciscorum</td>
</tr>
<tr>
<td>569 Euphausia pacifica</td>
</tr>
<tr>
<td>83 Amphiodia periercta</td>
</tr>
<tr>
<td>216 Cancer gracilis</td>
</tr>
<tr>
<td>82 Dendraster excentricus</td>
</tr>
<tr>
<td>548 Cancer oregonensis</td>
</tr>
</tbody>
</table>
the individuals of this species group was 57-86 m. Species group 2 consisted of two species of Spirotocaris that were restricted to one location (49° 9'N, 124° 13'W) in 80-86 m of water. Most of the individuals of these two species were found in April 1975. Species group 3 consisted of two species restricted to site group D (57-86 m). The two species were most abundant in April 1975 and September 1975, and few individuals were found in June 1975. Species group 4 consisted of three species of Crangon and two gastropods that were most abundant in site group A, the shallowest site group. Species group 5 consisted of 5 species that were found in most samples. The frequency of occurrence ranged from 49-87 percent.
PART V: DISCUSSION

Baseline Studies

307. Five benthic assemblages and 12 station groups were found off the mouth of the Columbia River in December 1974-January 1975. Except for assemblage C (the southern inshore assemblage), there was little in common between assemblages found in this area and benthic assemblages reported from other parts of the Oregon-Washington continental shelf by Carey (1965, 1972), Bertrand (1971), Lie (1969), Lie and Kisker (1970), and Lie and Kelley (1970). The range of values of community structure parameters, such as diversity, density, and biomass, was greater in the study region than the range of values reported from the entire Oregon-Washington continental shelf. The influence of the Columbia River, primarily sediment deposition, probably accounts for the difference between benthic assemblages in the study site and the rest of the Oregon-Washington coast.

308. Seasonal variations of benthic community structure and species composition were considerable, especially at inshore locations exposed to sediment movement due to winter storms and at locations affected by sedimentation from the Columbia River. The fluctuations of benthic communities, although related to seasonal environmental changes, were not completely yearly in periodicity. Comparison of benthic assemblages in January 1975 and January 1976 showed considerable yearly differences. The results from control locations sampled for experimental site G in April and June 1976, compared to April and June 1975, support this conclusion. Yearly variations in benthic communities are probably related to yearly fluctuations in the intensity of winter storms and in the output of water from the Columbia River. The instability of populations of several species, such as Diastyloipsis dawsoni, Atylus tridens, Spiophanes bombyx, and Siliqua patula, also contributes to yearly variations in community structure.

309. The structure and distribution of benthic assemblages were
related to depth. Depth is probably a composite of several environmental factors, including a reduced intensity of winter storms with depth, increased organic content of sediment with depth, and an increase in finer grained sediment with depth. Superimposed on the depth gradient was the influence of the Columbia River. Fine-grained sediment (\(\geq 4.5 \) φ) was deposited near disposal site B during high river flow in spring. The substrate near disposal site B therefore changed from sand during the winter months to silt after the spring deposition. The fine grained sediment was resuspended during winter storms and was transported in a northwesterly direction by bottom currents. Benthic communities located in this northwesterly direction experience increased amounts of silts and clays from the winter pulses of fine-grained material. All locations in the study site region were influenced by the Columbia River, directly by sedimentation and organic enrichment, or indirectly by increased primary productivity due to localized Columbia River induced upwelling (Anderson, 1972).

310. Most stations located directly off the mouth of the Columbia River (15-47 m water depth) were exposed to considerable seasonal changes in sediment type due to deposition of silt from the Columbia River. Benthic assemblages in this area had considerable seasonal changes and spatial differences in species composition and values of community structure parameters. In winter most stations (R-13, R-14, R-15, R-25, and R-26) in this area had a sandy substrate. Benthic assemblages had moderate diversity values and low density and biomass values. Inshore, these assemblages were dominated by the gastropoda Olivella biplicata and the polychaete Magelona sacculata; offshore, by the holothuroid Paracaudina chilensis, the polychaetes Haploscoloplos elongatus, Heteromastus filobranchus, and Chaetozozone setosa, and the bivalve Axinopsida serricata. After deposition of fine-grained sediment with presumably high organic content, the assemblages had much higher density and biomass values and lower diversity values. The dominant species after deposition were the cumacean Diastylopsis dawsoni, the bivalve Siligua patula, and sometimes the polychaete Spio filicornis and the amphipoda Atylus tridens.
311. Stations located in the northern part of disposal site B (25-40 m depth) had sediments with high percentages of silt and clay during all sampling periods. The spring deposition increased the percentage of silt, but winter storms and currents did not transport all of the fine-grained material out of this region. Sediments in this region often had horizontal layers of silty and sandy sediments. Benthic assemblages in this region (R-16, R-17, and R-22) had the lowest diversity values and the highest density and biomass values of any assemblage in the study area. The cumacean Diastylopsis dawsoni was always a dominant species.

312. The sediments at areas located north of disposal site B (25-70 m depth) had a higher percentage of silt and clay than sediments at the same depth south of the Columbia River. The fine grained sediment was transported north-northwesterly from near disposal site B by winter storms and bottom currents. The diversity of benthic assemblages increased northward and with increased depth. The biomass and density of macrofauna decreased northward and increased with increased depth. The mean Bray-Curtis and Czekanowski dissimilarity values between seasons (R-6, R-23, and one station R-7 that was not included in the results) were low, indicating little change in the abundance of most dominant macrofaunal species and species composition with season. The density and biomass of macrofauna was higher north of the Columbia River than south of the Columbia River at similar depths.

313. The sediment at stations located inshore and south of the Columbia River (R-1, R-2, R-3, R-10, R-18, R-19, and R-24) was a well-sorted sand and did not vary with season. The mean Bray-Curtis and Czekanowski dissimilarity values between seasons were low, indicating little change in species composition with season. The most apparent seasonal change in this benthic assemblage was the introduction of the large numbers of juvenile Spiophanes bombyx into the population in June and September 1975 (Figure C48). The increase in dominance of Spiophanes bombyx beginning in June 1975 decreased diversity and increased density at all stations (Figure C49). Station 24 was the only station occupied on all cruises. The abundance of Spiophanes bombyx did not decrease
Figure C48. Seasonal Abundance of Spiophanes bombyx in Assemblage C
Figure C49. Seasonal Changes of Values of Community Structure Parameters in Assemblage G
greatly at this station between January 1976 and June 1976. Results from three other control stations confirm the continued high abundance of *Spiophanes bombyx* in this area. Station R-20 on the Columbia River delta and station R-23 north of the Columbia River also had an increase in the abundance of *Spiophanes bombyx* in June 1975 and September 1975.

314. The sediment at stations located near the mouth of the Columbia River (10-25 m depth) was sand, which varied little with season. The mean Bray-Curtis and Czekanowski dissimilarity were high (R-11, R-12, and R-21), indicating change in the abundance of dominant macrofauna and species composition with season. Diversity and species richness values and density were lower than for stations located on a sandy substrate at the same depths south of the Columbia River. Seasonal changes in species composition were also greater than at the southern stations. Dominant species at the deeper stations were the polychaete *Magelona sacculata* and the gastropoda *Olivella biplicata* in the winter; and inshore, the amphipods *Hippomedon denticulatus*, *Mandibulophoxus uncirostratus*, and *Monoculodes spinipes*, and the polychaete *Spio filicornis*. The most apparent seasonal change was an increase in the abundance of *Spio filicornis* in June 1975 and September 1975. *Spio filicornis* also increased in abundance at stations R-13 and R-25, which were near the mouth of the Columbia River.

315. Seasonal results for the benthic assemblage located farthest offshore (80-100 m depth, silty sand substrate) were not presented in this report but were included in the discussion in order to relate depth to the structure of benthic assemblages off the mouth of the Columbia River. Station group A had the highest values of diversity and species richness in the areal baseline. The biomass and density of macrofauna, except in this study, were higher than any assemblage reported for the Oregon-Washington coast. The seasonal variation in sediment, species composition and community structure was minimal. This seasonal stability, high diversity, density, and biomass is probably related to three factors. First, the impact of winter storms is decreased with depth resulting in increased sediment stability. Second, several species of
tube dwelling polychaetes including *Maldane sarsi*, *Spiochaetopterus costarum*, and *Myriochele oculata* also increase sediment stability. Third, the sediments have high organic content (Gross et al., 1972) probably resulting from the Columbia River sediment deposition and the high primary productivity of this area.

Experimental Site G

Effects of dredge material disposal on benthic communities

316. The samples obtained from Experimental site G were clustered using intrinsic attributes (species abundance values). The intrinsic and magnitude of dredged material deposition. Three types of data are available to describe the extent and magnitude of dredged material disposal: first, U.S. Army Corps of Engineers records on the disposal operations; second, observations of predisposal and postdisposal bathymetry; and third, textural analysis of predisposal and postdisposal sediments.

317. The hopper dredges HARDING and BIDDLE deposited sediments dredged from the mouth of the Columbia River an average distance of 213 m from the experimental site marker buoy (Charles Galloway, Army Engineers, Portland District, personal communication, in Sternberg et al., 1977). Approximately 80 percent of the sediments were deposited on the south and southwest side of the marker buoy, and 20 percent of the sediment was deposited on the northern side of the buoy.

318. According to bathymetric records (Sternberg et al., 1977), the greatest accumulation of dredged material was on the south and southwest side of the experimental site marker buoy. A relatively flat deposit with a radius of about 228 m was found around the buoy with the base of the steeper depositional slope found up to 456 m from the buoy. Comparing Figure A123 in Sternberg et al. (1977) and Figure C24 in this study, stations R-27, K-14, K-16, and K-18 were located on the flat top of the dredged material deposit; stations K-7, K-9, K-22, and K-31 were located
on the slope of the dredged material deposit; and stations R-32, K-11, and K-26 were located near the base of the slope. The following stations were outside the area of deposition: R-24, R-28, R-29, R-31, K-5, K-20, K-27, K-28, K-36, and K-40. The remaining stations (R-19, R-33, K-1, K-34, and K-38) were at the edge of the depositional area. The stations located on the flat top of the deposit received direct deposition of dredged material which accumulated to a maximum depth of 1.5 m. Benthic assemblages at those stations probably were exposed to immediate burial by the dredged material. Benthic assemblages found along the slope of the dredged material deposit may have been exposed to immediate burial by dredged material or covered by the dredged material that was moved by currents generated by the fall and impact of disposed sediment (Sternberg et al., 1977). The depth of disposal material on the slope of the flat top dredged deposit was 0.3-0.6 m. The benthic assemblages located near the base of the slope were probably not exposed to direct burial, but to a layer of dredged material less than 0.3-m deep that was moved into this area by natural currents and currents created by the disposal operation (Sternberg et al., 1977). Benthic assemblages outside the disposal area were probably not directly affected by the disposal operation.

319. Predisposal sediments near experimental site G were characterized by high factor loadings on the 2.75 ø and 3.25 ø grain size fractions (Sternberg et al., 1977). The sediments were well-sorted sand with a median phi-size of 2.75-3.10 ø. The dredged sediment from the mouth of the Columbia River was also sand but had high factor loadings on the 2.00 and 2.50 ø grain size fractions.

320. Postdisposal sediments collected from experimental site G in September 1975 were characterized by high factor loadings on the 2.00 and 2.50 ø phi sizes. Sediments at stations K-11, K-14, K-16, K-26, K-31, K-34, and R-37 had high factor loadings on the 2.00 ø size fraction. Sediments at stations K-7, K-9, K-18, K-22, K-38, and R-32 had high factor loadings on the 2.50 ø size fraction. Sediments at stations K-20, K-27, K-40, R-24, R-28, R-29, and R-31 were characterized by high factor loadings on the 2.75 ø and 3.25 ø size class and were probably not affected by dredged disposal. Stations K-5 and R-33 had high factor loading on the 2.75 ø size fraction.
321. In summary, it appears that all but stations K-20, K-27, K-40, R-24, R-28, R-29, and R-31 were affected by dredged material. Stations R-27, K-7, K-9, K-14, K-16, K-18, K-22, and K-31 were located in the area of greatest deposition. Benthic assemblages located in this area were probably exposed to rapid burial.

322. The samples obtained on the September 1975 cruise were therefore separated into three groups extrinsically and compared to the intrinsically derived clusters. The stations that were exposed to direct burial by dredged material were intrinsically clustered together in station groups F₁ and G₁. The remaining stations that were not affected by dredged and material and those affected by dredged material but not direct burial were intrinsically clustered together in station group H₁. Two stations did not correspond to this pattern. Station K-7, which was affected by direct burial, was part of station H₁, and Station K-38 clustered with station group G₁.

323. In order to estimate the effects of dredged material disposal on benthic community structure at site G, the values of community structure parameters among the three groups of extrinsically derived stations were analyzed with the Kruskal-Wallis H-test (Table C41). All community structure parameter values had significant differences among the three station groups. A multi-comparison based on Kruskal-Wallis rank sums using Dunn's (1964) large-sample approximation for unequal sample sizes with a 0.10 experiment-wise error rate was used to determine the station groups that had significant differences in community structure values. The stations exposed to direct burial had a significantly higher diversity (H') and evenness (J') values and significantly lower density of macrofauna, when compared to the less affected station groups. The biomass and the species richness (SR) values were significantly higher at the stations exposed to direct burial when compared to the unaffected stations. No significant difference was found between the unaffected and intermediate stations.

324. In October 1975, 13 benthic stations were resampled. The sediments at stations unaffected by dredged material in September (R-24, R-28, R-29, and R-31) still had high factor loadings on the 2.75 ϕ and
Table C41

Comparison of Values of Community Structure Parameters Between the Three Extrinsically Derived Station Groups Using a Kruskal-Wallis H-Test, Experimental Site G (September 1975).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unaffected</th>
<th>Intermediate</th>
<th>Direct Burial</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H') (diversity)</td>
<td>1.67</td>
<td>1.86</td>
<td>3.15</td>
<td><0.005</td>
</tr>
<tr>
<td>(J') (evenness)</td>
<td>0.30</td>
<td>0.34</td>
<td>0.58</td>
<td><0.005</td>
</tr>
<tr>
<td>(SR) (species richness)</td>
<td>6.05</td>
<td>6.32</td>
<td>6.74</td>
<td><0.005</td>
</tr>
<tr>
<td>(N/m^2) (density)</td>
<td>3948</td>
<td>2997</td>
<td>1300</td>
<td><0.001</td>
</tr>
<tr>
<td>(B/m^2) (biomass)</td>
<td>2.02</td>
<td>2.59</td>
<td>3.23</td>
<td><0.025</td>
</tr>
</tbody>
</table>
3.25 $ sediment size classes. The sediments at stations exposed to direct burial (R-27, K-7, K-16, K-18, K-22, and K-31) still had high factor loadings on the 2.00 $ and 2.50 $ sediment size class. Compared to September 1975, there was a reduction of the factor loadings on the 2.00 $ sediment size class at some stations and an increase in the factor loadings on the 2.75 $ sediment size class. The intermediate stations (R-33, K-11, and K-26) had the highest factor loadings on the 2.75 $ sediment size class with a decrease in the factor loadings on the 3.25 $ sediment size class when compared to September 1975.

325. The three station groups defined by sediment characteristics correspond with the intrinsically derived station groups except for Station K-7. The four stations unaffected by dredged disposal clustered together in station group I. The three stations that were intermediate together with station K-7 formed station group G, and the stations that were exposed to direct burial formed station group F.

326. The same techniques (Kruskal-Wallis H-test with multiple comparison) that were used for the September experimental site data were used to estimate the effects of dredged material disposal on benthic community structures. All community structure parameter values had significant differences between station groups, except for species richness (SR) values. The stations exposed to direct burial had significantly higher diversity (H') and evenness (J') values when compared to unaffected stations. The density and biomass of macrofauna was significantly lower at stations exposed to direct burial when compared to unaffected stations. The difference between intermediate stations and those exposed to direct burial or to the unaffected stations with respect to diversity (H') and evenness (J') values and density of macrofauna could not be tested because the station groups did not contain an adequate number of samples. There was no overlap in the range of values of these parameters or rank values of these parameters between the three station groups.

327. In January 1975, 12 benthic stations were resampled. The sediments at stations unaffected by dredged material in September (R-24, R-28, and R-31) still had high factor loadings on the 2.75 $ and 3.25 $ sediment size classes. The stations exposed to direct burial (K-7, K-18, K-22, and K-31) all had high factor loading on the 2.50 $ and 2.75 $
Table C42

Comparison of Values of Community Structure Parameters Between the Three Extrinsically Derived Station Groups Using a Kruskal-Wallis H-Test, Experimental Site G (October 1975).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unaffected</th>
<th>Intermediate</th>
<th>Direct Burial</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>H' (diversity)</td>
<td>1.45</td>
<td>2.15</td>
<td>3.19</td>
<td><0.01</td>
</tr>
<tr>
<td>J' (evenness)</td>
<td>0.30</td>
<td>0.43</td>
<td>0.68</td>
<td><0.01</td>
</tr>
<tr>
<td>SR (species richness)</td>
<td>5.15</td>
<td>4.87</td>
<td>4.70</td>
<td>N.S.</td>
</tr>
<tr>
<td>\overline{N}/m^2 (density)</td>
<td>3130</td>
<td>1334</td>
<td>438</td>
<td><0.01</td>
</tr>
<tr>
<td>\overline{B}/m^2 (biomass)</td>
<td>2.21</td>
<td>1.81</td>
<td>1.15</td>
<td><0.025</td>
</tr>
</tbody>
</table>

Table C43

Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U-Test, Experimental Site G (January, 1976).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unaffected</th>
<th>Affected</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>H' (diversity)</td>
<td>2.44</td>
<td>3.26</td>
<td><0.10</td>
</tr>
<tr>
<td>J' (evenness)</td>
<td>0.49</td>
<td>0.73</td>
<td><0.01</td>
</tr>
<tr>
<td>SR (species richness)</td>
<td>5.09</td>
<td>4.44</td>
<td>N.S.</td>
</tr>
<tr>
<td>\overline{N}/m^2 (density)</td>
<td>1098</td>
<td>236</td>
<td><0.01</td>
</tr>
<tr>
<td>\overline{B}/m^2 (biomass)</td>
<td>1.42</td>
<td>1.66</td>
<td>N.S.</td>
</tr>
</tbody>
</table>
sediment size classes with moderate factor loadings on the 2.00 \(\phi \) sediment size class and no factor loadings on the 3.25 \(\phi \) sediment size class. The intermediate stations (K-11 and K-26) had high factor loadings on the 2.75 \(\phi \) size class as in October 1975. Station R-19 and R-33 had high factor loadings on the 2.75 \(\phi \) and 3.25 \(\phi \) sediment size class. Both stations had been intermediate stations as defined by sediment characteristics but were now considered to be unaffected stations because sediment characteristics had returned to that of the ambient substrate.

328. The three station groups defined by sediment characteristics corresponded with intrinsically derived station groups except for station R-33. Four of the five stations unaffected by dredged material disposal clustered together in station group I\(_3\). The four stations exposed to direct burial clustered together in station group F\(_3\). The two intermediate stations plus R-33 clustered together to form station group G\(_3\).

329. The sediment characteristics of the stations exposed to direct burial by dredged material and the intermediate stations had nearly identical sediment characteristics in January 1975. Therefore, the differences in community structure value between these groups of stations and the unaffected stations was compared with the use of the Mann-Whitney U-test (Table C43). The diversity (\(H' \)) and evenness (\(J' \)) values were significantly higher at the stations affected by dredged material disposal and the density of macrofauna was significantly higher at the unaffected stations. No significant difference was found in the species richness (SR) values or the biomass of macrofauna.

330. In April 1976, 12 benthic stations were resampled. The sediments at stations unaffected by dredged material in January 1976 (R-24, R-28, R-31, and R-33) still had high factor loadings on the 2.75 \(\phi \) and 3.25 \(\phi \) sediment size classes. The sediment at stations exposed to direct burial by dredged material (R-27, K-7, K-16, K-18, K-22, and K-31) all had high factor loadings on the 2.50 \(\phi \) sediment size class and all but R-27 had a high factor loading on the 2.75 \(\phi \) sediment size class. All the sediments at those stations had moderate factor loadings on the 2.00 \(\phi \) sediment size class and no factor loading on the 3.25 \(\phi \) sediment size class. The sediments at the intermediate stations had high factor load-
ings on the 2.75 \(\phi \) sediment size class and moderate to low factor loading on all other sediment size classes.

331. The two station groups defined by sediment characteristics corresponded to the intrinsically derived station groups. Stations unaffected by dredged material disposal were station group I\(_4\). Stations that were exposed to direct dredged material disposal or that were affected by dredged disposal formed station group F\(_4\).

332. The differences in community structure values between those stations affected by dredged material and those unaffected were compared with the Mann-Whitney U-test (Table C44). Diversity (\(H' \)) and evenness (\(J' \)) values were significantly higher at the stations affected by dredged material disposal (\(p < 0.01 \)). The species richness (SR) values and density of macrofauna were significantly higher at the unaffected stations (\(p < 0.01 \)). The biomass values were somewhat higher at the unaffected stations (\(p < 0.20 \)).

333. In June 1976, the same 12 stations as in April 1976 were sampled. The sediments at stations unaffected by dredged material in January 1976 (R-24, R-28, R-31, and R-33) still had high factor loadings on the 2.75 \(\phi \) and 3.25 \(\phi \) sediment size classes. The sediments at stations that were exposed to direct burial by dredged material (R-27, K-7, K-16, K-18, K-22, and K-31) had high factor loadings on the 2.50 \(\phi \) and 2.75 \(\phi \) sediment size classes, moderate factor loadings on the 2.00 \(\phi \) sediment size class, and no factor loadings on the 3.25 \(\phi \) sediment size class. The sediments at intermediate stations (K-11 and K-26) had high factor loadings on the 2.75 \(\phi \) sediment size class and moderate factor loadings on the 2.00 \(\phi \) and 2.50 \(\phi \) sediment size class.

334. The two station groups defined by sediment characteristics corresponded with the intrinsically derived station groups except for station K-11. Stations unaffected by dredged material disposal plus intermediate station K-11 were clustered in station group I\(_5\). The remaining stations that were affected by dredged material disposal clustered into station group F\(_5\).

335. The difference in community structure values between those stations affected by dredged disposal and those unaffected were compared
Table C44

Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U-test, Experimental Site G (April, 1976).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unaffected</th>
<th>Affected</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H' \ (\text{diversity})$</td>
<td>2.96</td>
<td>3.99</td>
<td><0.01</td>
</tr>
<tr>
<td>$J' \ (\text{evenness})$</td>
<td>0.55</td>
<td>0.84</td>
<td><0.01</td>
</tr>
<tr>
<td>$SR \ (\text{species richness})$</td>
<td>6.65</td>
<td>5.45</td>
<td><0.01</td>
</tr>
<tr>
<td>$\bar{N}/m^2 \ (\text{density})$</td>
<td>1349</td>
<td>248</td>
<td><0.01</td>
</tr>
<tr>
<td>$\bar{E}/m^2 \ (\text{biomass})$</td>
<td>1.66</td>
<td>1.23</td>
<td><0.20</td>
</tr>
</tbody>
</table>

Table C45

Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U-test, Experimental Site G (June, 1976).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unaffected</th>
<th>Affected</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H' \ (\text{diversity})$</td>
<td>3.95</td>
<td>3.85</td>
<td>N.S.</td>
</tr>
<tr>
<td>$J' \ (\text{evenness})$</td>
<td>0.70</td>
<td>0.72</td>
<td>N.S.</td>
</tr>
<tr>
<td>$SR \ (\text{species richness})$</td>
<td>7.49</td>
<td>6.64</td>
<td><0.20</td>
</tr>
<tr>
<td>$\bar{N}/m^2 \ (\text{density})$</td>
<td>1220</td>
<td>730</td>
<td><0.01</td>
</tr>
<tr>
<td>$\bar{E}/m^2 \ (\text{biomass})$</td>
<td>2.06</td>
<td>1.53</td>
<td><0.10</td>
</tr>
</tbody>
</table>
with the Mann-Whitney U-test (Table C45). The density and biomass of macrofauna were significantly higher at the unaffected stations ($p < 0.01$). The species richness (SR) values were somewhat higher at the unaffected stations ($p < 0.20$). There was no significant difference between values of diversity (H') and evenness (J') at the two sets of stations.

Effects of dredged material disposal on dominant species

336. The effects of dredged material disposal on the abundance of the 33 most dominant species at or near experimental site G was estimated by the Friedman's two-way rank test (Tate and Clelland, 1957). Seasonal changes in abundance were also estimated by Friedman's two-way rank test. A total of ten stations (R-24, R-27, R-28, R-31, R-33, K-7, K-10, K-18, K-22, and K-31) and four sampling periods (September 1975, October 1975, April 1976, and June 1976) were included in the analyses. The remaining stations and sampling periods were not fully sampled, and therefore, could not be included.

337. There were significant seasonal differences in the abundance of 14 species ($p < 0.01$) and significant differences in abundance between stations for 12 species ($p < 0.01$). Table C46 is a summary of the results of the Friedman two-way rank test. A distribution-free multiple comparison test based on Friedman's rank sums for species abundances was used to determine which seasons and what stations were significantly different ($p < 0.06$) (Hollander and Wolfe, 1973).

338. Of the 12 species that had significant differences in abundance values between stations, 10 species had consistently (no overlap) higher abundances (mean rank/station) at the unaffected stations, when compared to stations that were affected by dredged material disposal. In all cases where the difference in abundances (rank sums) were significant (multiple comparison test), the station with the higher abundance value was an unaffected station and the station with the lower abundance value was an affected station. The species that had significantly higher abundances at control stations included the polychaetes Spiophanes bombyx, Nephtys caecoides, Glycinde sp #2, Scoloplos armiger, and Northria iridescentis, and the amphipods Eohaustorius sencillus, Ampelisca macrocephala, Paraphoxus vigitegus, Photis lacia, and Paraphoxus epistomius. The ophiuroid
Table C46

A Summary of Significant Seasonal or Station Differences in Abundance of 33 Species In or Near Experimental Site G, Based on Friedman's Two-way Rank Test.

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>Seasons</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>p<.01</td>
<td>p<.01</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>279</td>
<td>Magelona sacculata</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>p<.05</td>
<td>p<.01</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>p<.10</td>
<td>p<.01</td>
</tr>
<tr>
<td>261</td>
<td>Haploscoloplos elongatus</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>237</td>
<td>Chaetozone setosa</td>
<td>N.S.</td>
<td>p<.05</td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>N.S.</td>
<td>p<.01</td>
</tr>
<tr>
<td>9</td>
<td>Diastylopsis dawsoni</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>p<.01</td>
<td>p<.01</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>N.S.</td>
<td>p<.01</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>471</td>
<td>Nemertea #7</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
<tr>
<td>96</td>
<td>Hemilamprops californiensis</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>343</td>
<td>Spio filicornis</td>
<td>p<.10</td>
<td>p<.10</td>
</tr>
<tr>
<td>95</td>
<td>Mesolamprops sp. #1</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>141</td>
<td>Paraphoxus vigitegus</td>
<td>N.S.</td>
<td>p<.01</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>p<.01</td>
<td>p<.05</td>
</tr>
<tr>
<td>256</td>
<td>Glycinde sp #2</td>
<td>N.S.</td>
<td>p<.01</td>
</tr>
<tr>
<td>29</td>
<td>Macoma modesta alaskana</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>N.S.</td>
<td>p<.05</td>
</tr>
<tr>
<td>341</td>
<td>Scoloplos armiger</td>
<td>p<.10</td>
<td>p<.01</td>
</tr>
<tr>
<td>104</td>
<td>Colurostylis occidentalis</td>
<td>p<.01</td>
<td>N.S.</td>
</tr>
<tr>
<td>8</td>
<td>Olivella buplicata</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
<tr>
<td>354</td>
<td>Thalenessa spinosa</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
<tr>
<td>310</td>
<td>Northria iridescens</td>
<td>p<.05</td>
<td>p<.01</td>
</tr>
<tr>
<td>158</td>
<td>Photis lacia</td>
<td>p<.10</td>
<td>p<.01</td>
</tr>
<tr>
<td>137</td>
<td>Paraphoxus epistomus</td>
<td>N.S.</td>
<td>p<.01</td>
</tr>
<tr>
<td>27</td>
<td>Siliqua patula</td>
<td>N.S.</td>
<td>p<.10</td>
</tr>
<tr>
<td>460</td>
<td>Nemertea sp #5</td>
<td>p<.01</td>
<td>p<.10</td>
</tr>
</tbody>
</table>
Amphiodia periercta-urtica was also more abundant at control stations and station K-7. The gastropoda Olivella pycna was most abundant at stations that were affected by dredged material disposal, except for station K-31. Eighteen of the remaining 19 species had approximately the same rank abundance at control and affected stations or had higher rank abundances at the control stations. The polychaete Spio filicornis had lower rank abundance at the control stations.

339. Significant differences in rank seasonal abundance were found in 14 species. The polychaete Haploscoloplos elongatus, the amphipods Ampelisca macrocephala and Monoculodes spinipes, the cumacean Mesolamprops sp #1 and Hemilamprops californiensis, and Nemertea sp #5 all had lower rank abundance in October 1975 and April 1976. The cumacean Colurostylis occidentalis and the amphipoda Paraphoxus obtusidens major had lower rank abundance in October 1975. The highest rank abundance of the gastropoda Olivella baetica and the polychaetes Spiophanes bombyx and Magelona sacculata was in September and October 1975, while the cumacean Diastylopsis dawsoni and the bivalve Macoma modesta alaskana were most abundant only in September 1975. The mysid Archeomysis grebnitzkii was most abundant in June 1976. No relationship between seasonal abundance and differences in abundance between stations was evident.

Transportation of macrofauna to experimental site G via dredged material disposal.

340. There is very little evidence that transportation of species to the experimental disposal site via disposal activities was an important mechanism for the change in abundance of dominant species at experimental site G. The dominant species found at the area to be dredged are shown in Table C47. Diastylopsis dawsoni, Crangon stylirostris, Eohaustrorius sencillus, Monoculodes spinipes, Nemertea sp #5, and Nephtys californiensis were found at most inshore sand stations in both the areal and seasonal baseline. There was no increase in abundance of these species at stations affected by dredged material disposal compared to control stations.
341. *Paraphoxus milleri, Eohaustorius washingtonianus, and Anisogammarus confervicolus* were restricted to the mouth of the Columbia River and to areas near the mouth of the Columbia River both in the areal and seasonal baseline. Only a single specimen of *Paraphoxus milleri* was found (Station K-31) at any of the affected or control stations in the disposal experiment. No specimens of *Eohaustorius washingtonianus* or *Anisogammarus confervicolus* were found at the affected or control stations.

342. *Archeomysis grebnitzkii* was also found at most inshore sand stations in both the areal and seasonal baseline with the highest abundances found in or near the mouth of the Columbia River. The abundance of *Archeomysis grebnitzkii* was higher at the stations affected by disposal in January 1976 and April 1976. The abundance values for *Archeomysis grebnitzkii* were higher at control stations in September 1975 and June 1976. The abundance values were the same in October 1975.

343. *Spio filicornis* was found at most inshore sandy stations in both the areal and seasonal baseline with the highest abundance near the mouth of the Columbia River. The abundance of *Spio filicornis* was higher at control stations September 1975 and was higher at stations that received dredged disposal material in October 1975, April 1976, and June 1976. The abundance values were the same in January 1976.
Table C47

Dominant Species Found in the Dredged Area.*

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Species</th>
<th>BI</th>
<th>f(5)</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>9.6</td>
<td>5</td>
<td>195.6</td>
</tr>
<tr>
<td>145</td>
<td>Paraphoxus milleri</td>
<td>8.8</td>
<td>5</td>
<td>107.6</td>
</tr>
<tr>
<td>156</td>
<td>Eohaustorius washingtonianus</td>
<td>6.4</td>
<td>5</td>
<td>22.4</td>
</tr>
<tr>
<td>343</td>
<td>Spio filicornis</td>
<td>5.8</td>
<td>5</td>
<td>24.0</td>
</tr>
<tr>
<td>460</td>
<td>Nemertea sp #5</td>
<td>5.6</td>
<td>5</td>
<td>16.0</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>4.9</td>
<td>5</td>
<td>12.0</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>3.9</td>
<td>5</td>
<td>11.2</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>2.5</td>
<td>5</td>
<td>11.2</td>
</tr>
<tr>
<td>488</td>
<td>Anisogammarus confervicolus</td>
<td>2.0</td>
<td>5</td>
<td>6.4</td>
</tr>
<tr>
<td>204</td>
<td>Crangon stylirostris</td>
<td>1.9</td>
<td>3</td>
<td>3.6</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* Includes Biological Index (BI), frequency of occurrence [f(5)] and mean number of individuals/m² (N/m²) for each species.
PART VI: CONCLUSIONS AND SPECULATIONS

Baseline

344. The distribution and community structure of macrobenthic assemblages along the Oregon-Washington continental shelf have been related to depth and substrate type (Carey 1965, 1972; Bertrand, 1971; Lie, 1969; Lie and Kelley, 1969; Lie and Kisker, 1970; and Kulm et al., 1975). In general, the density and biomass of macrofauna increases offshore to a maximum at the outer edge of the continental shelf. The diversity and evenness values of benthic assemblages as well as the number of species (species richness) also increases offshore. The above authors have reported three benthic assemblages, which occur in roughly parallel bands along the Oregon-Washington continental shelf, an inshore shallow-water sand assemblage (0-90 m depth), an intermediate silty-sand assemblage (50-164 m), and a deep-water mud assemblage (80 m to slope). Kulm et al. (1975) also postulated a fourth assemblage associated with relict sand patches on the outer continental shelf. Preliminary information from samples collected by the authors on the outer continental shelf, south of Astoria Canyon tend to support Kulm et al. (1975).

345. Except for assemblage C, the species composition, biomass, and density of benthic assemblages off the mouth of the Columbia River was not similar to that reported from other benthic assemblages found on the Oregon-Washington continental shelf. Assemblage C (the southern inshore sand assemblage) may correspond to the shallow water sand-bottom assemblage reported from the Washington coast (Lie, 1969; Lie and Kisker, 1970; and Lie and Kelley, 1970) and the inshore assemblage on the central Oregon coast (Carey, 1972). Of the 21 most abundant species found in the shallow water sand-bottom assemblage along the Washington coast, 11 were also abundant at assemblage C and 5 were present but rare. The remaining four species reported by Lie and Kisker (1970) may represent a difference in taxonomic opinion and may also be present in assemblage C.

346. Most of the dominant species of polychaetes and amphipods from assemblage C were abundant at shallow sandy stations off the central
Oregon coast (Carey, 1972; Barnard, 1971). The density and biomass of macrofauna were similar among assemblage C, the shallow water sand-bottom community along the Washington coast, and the inshore sand assemblage off the central Oregon coast.

347. The distribution, community structure, and seasonal constancy of benthic assemblages found off the mouth of the Columbia River were interpreted in part to be the result of the same factors that influence benthic assemblages along the Oregon-Washington coast. These factors included an increase in silt, clay, and organic content in sediments offshore and an increase in sediment stability due to reduced sediment stirring by winter storms with depth. Superimposed on this depth gradient were the effects of the deposition of fine-grained sediments from the Columbia River and the high primary productivity of the area.

348. Diversity and species richness values were considered to be related primarily to sediment stability. The values of diversity and species richness increased offshore (Spearman rank correlation p < 0.001), probably the result of the increased sediment stability due to decreased sediment stirring by winter storms. The high abundance of tube-dwelling polychaetes at deeper stations also increased sediment stability. The lowest values of diversity and species richness were calculated for stations that had considerable seasonal changes in sediment characteristics as a result of the deposition of fine-grained sediments at high flow of the Columbia River.

349. Biomass and density of macrofauna may be related to the organic content of sediments. The biomass and density of macrofauna were correlated with the percentage silt and clay of sediments (Spearman rank p < 0.001). The highest values of density and biomass were found at areas of high silt deposition. In this region, organic content of sediments is probably related to the percentage silt and clay in sediments.

350. The seasonal constancy of species composition was highest in areas that had little seasonal change in sediment grain-size distribution. Benthic assemblages exposed to deposition of fine-grained material by the Columbia River had the highest Czekanowski dissimilarity values (low constancy) between seasons of any stations in the study area. The seasonal
constancy of the abundance of dominant species was related with sediment stability. The between season Bray-Curtis dissimilarity values decreased with increasing sediment stability offshore (reduced stirring of sediments by storms) and were highest at stations that had the lowest seasonal stability because of deposition by the Columbia River.

Experimental Site G

351. From 9 July 1975 to 26 August 1975, approximately 4.6×10^5 m3 of sediment was dredged from the mouth of the Columbia River and deposited at experimental site G (Figure C3). The sedimentary deposit had a circular shape approximately 750 m in radius and 1.5 m in elevation. Calculations based on grain size and transport mechanisms suggested that the dredged material deposit was stable with time (Sternberg et al., 1977).

352. The station groups calculated from intrinsic species abundance values (Bray-Curtis dissimilarity, group average sorting strategy) were similar to station groups defined extrinsic data. The extrinsic data included U.S. Army Corps of Engineers records on the disposal operations, observations of predisposal and postdisposal bathymetry, and textural analysis of predisposal and postdisposal sediments.

353. Nonparametric tests on postdisposal (September 1975) data showed a significant increase in diversity (H') and evenness (J') values and a significant decrease in density of macrofauna at stations exposed to direct burial by dredged material compared to stations not affected by dredged material. The biomass of macrofauna and species richness (SR) values were also significantly higher at stations exposed to direct burial. The values of community structure parameters at stations that were not exposed to direct burial but affected by dredged material disposal were intermediate between affected and unaffected stations. The community structure values at intermediate stations were significantly different from values calculated from affected stations but not significantly different from unaffected stations.

354. Two months (October 1975) and five months (January 1976) after disposal, stations exposed to direct burial still had significantly
higher values of diversity (\(H'\)) and evenness (\(J'\)) and significantly lower density of macrofauna than unaffected stations. The species richness (SR) values were not significantly different, while the biomass of macrofauna was significantly higher at unaffected stations in October 1975 but not in January 1976.

355. Eight months (April 1976) after disposal, diversity (\(H'\)) and evenness (\(J'\)) values were still significantly higher at stations exposed to direct burial and species richness (SR) values and the density and biomass of macrofauna were significantly lower than unaffected stations. Ten months (June 1976) after disposal, diversity (\(H'\)) and evenness (\(J'\)) values were the same at stations exposed to direct burial and unaffected stations, while species richness (SR) values and the density and biomass of macrofauna were still significantly higher at unaffected stations.

356. There was a significant reduction of the abundance of 11 species at stations exposed to direct dredged material disposal when compared to unaffected stations. The affected species included the polychaetes Spiophanes bombyx, Nephtys caecoides, Glycinde sp #2, Scoloplos armiger, and Northria iridescens; the amphipods Eohaustorius sencillus, Ampelisca macrocephala, Paraphoxus vigitegus, Photis lacia and Paraphoxus vigitegus; and the ophiuroid Amphiodia periercta-urtica. The bivalve Olivella pycna was significantly more abundant at stations exposed to direct disposal than at unaffected stations. The higher abundance of most of the eleven species at unaffected stations persisted 10 months after disposal operations. The abundance of 13 species was not significantly different between affected and unaffected stations. These species included the gastropods Olivella baetica and Olivella biplicata; the bivalve Macoma modesta alaskana; the cumacean Diastylopsis dawsoni, Mesolamprops sp #1, Hemilamprops californiensis, and Colurostylis occidentalis; the polychaetes Magelona sacculata, Naplosclopolos elongatus, and Thalenessa spinosa; the mysid Archeomysis grebnitzkii; the amphipoda Paraphoxus obtusidens major; and Nemertea sp #7.

357. The principal short-term effects of offshore dredged material disposal on benthic assemblages include: (a) direct burial of the benthos by dredged material; (b) increased turbidity from the disposal
operations or resuspension of dredged material by waves and currents; (c) introduction of pollutants and organic matter; and (d) changes in sediment characteristics (Saila et al. 1972).

358. All the sediments collected from the entrance channel (dredged area) contained a low percentage of silt and clay (0.95-1.26 percent by weight). Sediments at experimental site G after disposal contained less than 2 percent silt and clay and the dredged material was a coarser sand than the ambient sediment. Turbidity levels at experimental site G after disposal were low (Sternberg et al., 1977). The turbidity levels at experimental site G during disposal and after disposal were the same as prior to disposal (Sternberg et al., 1977). It is therefore concluded that turbidity caused by the disposal operation or subsequent resuspension of sediment had no significant effect on macrobenthic assemblages.

359. The sediments at the entrance channel (dredged area) and the sediments at experimental site G after disposal contained the same amount of several possible contaminants as ambient sediment at experimental site G (Robert Holton, Oregon State University, 1977, personal communication). Possible contaminants measured included total sulfide, ammonia, oil and grease, and the metals cadmium, copper, iron, lead, magnesium, mercury, nickel, and zinc. In all cases the values of these contaminants were the same as would be expected from uncontaminated sediments (Robert Holton, Oregon State University, 1977, personal communication). The values of total organic carbon and nitrogen were low in the sediment dredged from the Columbia River and in the sediments at experimental site G after disposal and were not significantly different from the values reported from the ambient sediment prior to disposal operations (Robert Holton, Oregon State University, 1977, personal communication). It is therefore concluded that benthic assemblages were not affected by the introduction of pollutants or conditions created by organic enrichment.

360. The stress from direct deposition of dredged material and burial of the benthos was probably the most important short-term factor affecting benthos at experimental site G. Assuming a capacity of approximately 2.3×10^3 m3 of dredged material for the hopper dredges
BIDDLE and HARDING, the $4.6 \times 10^5 \text{ m}^3$ of dredged material was deposited in 200 loads over a two month period.

361. The second possible short-term stress on the benthic assemblages at experimental site G could be the change in sediment textural characteristics resulting from disposal. The sediments were changed from a well-sorted sand ($\text{Md } \varnothing = 2.75$ to $3.00 \varnothing$) to a coarser less well-sorted sand ($\text{Md } \varnothing = 2.00$ to $2.25 \varnothing$).

362. The most apparent effect of dredged material disposal on benthic assemblages at experimental site G was the significantly lower abundance of 11 of the 33 most abundant species. The higher diversity (H') and evenness (J') values at stations exposed to direct dredged material disposal primarily reflect the lower abundance of *Spiophanes bombyx* (the overwhelming dominant species in the study area) at affected stations. The disproportionate reduction in abundance of *Spiophanes bombyx* compared to other species at affected stations increased the equability (evenness J') of species abundances thus increasing diversity (H') values. The species richness (SR) values and the number of species were lower (except September 1975) at stations exposed to direct dredged material disposal, indicating that some species were eliminated from the affected area.

363. It was evident that the reduction in abundance of *Spiophanes bombyx* at stations exposed to direct deposition of dredged material was primarily responsible for the lower density of macrofauna at those stations. If *Spiophanes bombyx* were excluded from density comparisons the stations exposed to direct dredged material disposal would still have a significant lower density of macrofauna compared to unaffected stations. The reduction of abundance of other species at affected stations also contributed to the lower density of macrofauna at those stations.

364. Ten of the 11 species that had significantly lower abundance at stations affected by dredged material disposal were part of species groups 7 and 11 in the areal baseline. The polychaete, *Scoloplos armiger* was not included in a species group. Species group 7 was primarily restricted to assemblage C on the sandy substrate south of the Columbia River. Species group 11 was a widespread species group, especially
abundant in assemblage B, and much less abundant in the assemblages near the mouth of the Columbia River (assemblages D and E).

365. Thirteen species had no significant difference in abundance between stations exposed to direct dredged material disposal and unaffected stations. One species from species groups 5, 8, and 10 and two species from species group 7 were represented. Also represented were three species from species group 11 (the widespread species group) and five species from species group 12, an inshore species group, especially abundant near the mouth of the Columbia River in assemblages D and E.

366. It would therefore appear that species primarily restricted to the sandy inshore assemblage C (species group 7) south of the Columbia River were most affected by dredged material disposal. Species in species group 12 (assemblage D and E), which were found near the mouth of the Columbia River, were least affected by dredged material disposal.

367. Repopulation of benthos in an area exposed to direct burial by dredged material can be accomplished by benthos burrowing up through the dredged material, benthos migrating into the area, reproduction and recruitment of benthos from outside the affected area, and introduction of new species as part of the dredged material (Saila et al., 1972).

368. There was very little evidence for transportation of benthos to the experimental disposal site via dredged material. Most of the dominant species at the dredged area were found in low numbers at experimental site G prior to disposal. With the possible exception of the mysid *Archeomysis grebnitzkii* and the polychaete *Spio filicornis*, species dominant in the dredged area were either missing from the experimental site after disposal or had higher abundance at unaffected stations compared to stations exposed to direct dredged material disposal.

369. Although adequate information on recruitment on benthos from outside the affected area is not available it appears that the change in substrate resulting from disposal operations had little effect on the repopulation of benthos at experimental site G. Macrofauna retained on a 0.5 mm screen after disposal (September 1975) indicate a lower abundance of juveniles at stations exposed to direct disposal of dredged material compared to unaffected stations. The lower abundance of
juveniles at affected stations was probably the result of the disposal operation and not a reduced recruitment due to a change of substrate. The abundance of macrofauna retained on a 0.5 mm screen after disposal in October 1975, January 1976, and April 1976 was low with approximately equal abundances for most species at the stations exposed to direct dredged material disposal and unaffected stations. *Spiophanes bombyx* juveniles were more abundant at unaffected stations. In June 1976 the abundance of macrofauna retained on a 0.5 mm screen was higher than in October 1975, January 1976, and April 1976. There was little difference in abundance of juveniles at stations affected by dredged material and unaffected stations in June 1976.

370. Since the short-term repopulation of benthos into areas exposed to dredged material disposal was not primarily a result of the introduction of new species as part of the dredged material or recruitment via reproduction of species outside the area, most of the repopulation may have been accomplished by benthos burrowing up through the dredged material or benthos migrating into the area.

371. Although the sediment characteristics of the natural substrate at experimental site G did not vary with season, the sediment surface was unstable due to stirring of the bottom by both winter and summer storms. The instability of the substrate was observed by Sternberg et al. (1977) during both winter and summer conditions. Sternberg et al. (1977) estimated that sediment movement as a result of bottom currents generated by winds occurred 0-11 percent of the time during summer months and 66 percent of the time during winter months at experimental site G. These results agree with the conclusions by Komar et al. (1972) that short-period summer waves stir the bottom to depths of 90 m and long-period winter waves stir the bottom to depths of 125 m and possibly 200 m. During one winter storm, the sediment depth decreased approximately 0.5 m during a two-day period (Sternberg, University of Washington, 1976, personal communication). Macrobenthic species that exist on these conditions of sediment instability are probably adapted to burial by sediment and sediment movement.
372. The abundance of 13 species was not significantly affected by dredged material disposal. One species, Olivella pycna, had significantly higher abundance at affected stations. The three gastropods Olivella baetica, Olivella biplicata, and Olivella pycna have hard shells capable of withstanding dredged material disposal. All three species also burrow in sand, and judging from photographs (Sternberg, University of Washington, 1976) of tracks made by Olivella spp., they can migrate considerable distances on the sediment surface. The bivalve Macoma modesta alaskana also has a hard shell and burrows into the sand. Four cumacea, Diastylopsis dawsoni, Mesolamprops sp #1, Hemilamprops californiensis, and Colurostylis occidentalis were also not significantly affected by dredged material disposal. Adults of three cumacea were found in the plankton (Robert Holton, Oregon State University, 1977, personal communication) and are therefore capable of considerable horizontal migration. Most species of cumacea also burrow into the substrate. The three species of polychaetes Magelona sacculata, Haploscoloplos elongatus, and Thalenessa spinosa that were unaffected by dredged material disposal are nontube-dwelling, active species capable of considerable migration over the sediment surface and rapid burrowing through the sediment. The mysid Archeomysis grebnitzkii is commonly found on open sandy beaches in the surf zone and is capable of swimming considerable distances. The borrower Paraphoxus obtusidens major was the only amphipoda not significantly affected by dredged material disposal. Nothing is known about the biology of Nemertea sp #7, but many nemerteans are active burrowers in the substrate. Thus, most of the species that were not significantly affected by dredged material disposal are active, motile species capable of borrowing up through the dredged material and also capable of rapid recolonization of dredged material by horizontal migration.

373. The abundance of five polychaetes, five amphipods, and one ophiurid were significantly reduced by dredged material disposal. Two of the polychaetes, Nothria iridescens and Spiophanes bombyx, are tube dwelling and may not be capable of migrating up through the dredged material. The remaining three polychaetes Nephtys caecoides, Glycine sp #2, and Scoloplos armiger, are active nontube-dwelling species that
burrow through the sediment. Two amphipods, *Paraphoxus vigitegus* and *Paraphoxus epistomis*, are infauna species capable of limited burrowing. *Eohaustorius sencillus*, *Ampelisca macrocephala*, and *Photis lacia* live in tubes partially inserted in the sediment. The *Amphiodia periercta-urtica* complex were mostly juveniles. Adults were generally found in deeper water. Both *Amphiodia periercta* and *A. urtica* are primarily surface feeders and do not burrow deep into the sediment.

374. In general the species affected by dredged material disposal were tube-dwelling polychaetes and amphipods and species that have limited ability to borrow through the sediment. Many of these species were primarily restricted to the inshore sand sediments south of the mouth of the Columbia River. The species not affected by dredged material disposal were shelled gastropods and mollusks, nontube-dwelling polychaetes, and cumacea. All of these species were active burrowers and migrate considerable distances over the sediment. These species generally had a wide distribution and were abundant on the Columbia River delta as well as south of the River.
REFERENCES

APPENDIX C-I

STATION DATA

Table C-IA.* Station Data for Smith-McIntyre Grab Samples (pages 209-307).
Table C-IB.* Station Data for Metered Beam Trawl Samples (pages 308-312).
* Reproduced on microfiche and enclosed in envelope attached to the inside of the back cover of this report.
APPENDIX C-II

Species Lists

Table C-IIA. Phylogenetic Species List (pages 314-330).

Table C-IIB.* Alphabetical Species List (pages 331-356).

Table C-IIC.* Numerical Species List (pages 357-381).

* Reproduced on microfiche and enclosed in envelope attached to the inside of the back cover of this report.
<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coelenterata (Cnidaria)</td>
<td></td>
</tr>
<tr>
<td>Hydrozoa</td>
<td></td>
</tr>
<tr>
<td>Hydrozoa spp. (367)</td>
<td>11501</td>
</tr>
<tr>
<td>Anthozoa</td>
<td></td>
</tr>
<tr>
<td>Anthozoa sp. #1 (377)</td>
<td>40252</td>
</tr>
<tr>
<td>Anthozoa sp. #2 (378)</td>
<td>40253</td>
</tr>
<tr>
<td>Anthozoa sp. #3 (379)</td>
<td>40254</td>
</tr>
<tr>
<td>Anthozoa sp. #4 (428)</td>
<td>40255</td>
</tr>
<tr>
<td>Anthozoa sp. #5 (429)</td>
<td>40256</td>
</tr>
<tr>
<td>Anthozoa sp. #6 (430)</td>
<td>40257</td>
</tr>
<tr>
<td>Anthozoa spp. (328)</td>
<td>12000</td>
</tr>
<tr>
<td>Nematoda</td>
<td></td>
</tr>
<tr>
<td>Nematoda spp. (192)</td>
<td>14000</td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td></td>
</tr>
<tr>
<td>Turbellaria sp. #1 (522)</td>
<td>40258</td>
</tr>
<tr>
<td>Turbellaria spp. (365)</td>
<td>14201</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
</tr>
<tr>
<td>Echinoidea</td>
<td></td>
</tr>
<tr>
<td>Dendrasteridae</td>
<td></td>
</tr>
<tr>
<td>Dendraster excentricus (82)</td>
<td>16107</td>
</tr>
<tr>
<td>Schizasteridae</td>
<td></td>
</tr>
<tr>
<td>Brisaster latifrons (81)</td>
<td>16108</td>
</tr>
<tr>
<td>Holothuroidea</td>
<td></td>
</tr>
<tr>
<td>Cucumaridae</td>
<td></td>
</tr>
<tr>
<td>Pentamera sp. #1 (80)</td>
<td>16603</td>
</tr>
<tr>
<td>Molpadidae</td>
<td></td>
</tr>
<tr>
<td>Paracaudina chilensis (78)</td>
<td>16601</td>
</tr>
<tr>
<td>Molpadiia intermedia? (79)</td>
<td>16604</td>
</tr>
<tr>
<td>Ophiuroidea</td>
<td></td>
</tr>
<tr>
<td>Ophiurida</td>
<td></td>
</tr>
<tr>
<td>Ophiurida spp. (88)</td>
<td>17611</td>
</tr>
<tr>
<td>Amphuriidae</td>
<td></td>
</tr>
<tr>
<td>Amphuriidae spp. (85)</td>
<td>17602</td>
</tr>
<tr>
<td>Amphiodia urtica (84)</td>
<td>17606</td>
</tr>
<tr>
<td>Amphiodia periercta (83)</td>
<td>17607</td>
</tr>
<tr>
<td>Amphiodia sp. #1 (89)</td>
<td>17608</td>
</tr>
<tr>
<td>Amphiodia spp. (87)</td>
<td>17603</td>
</tr>
<tr>
<td>Amphioplus hexacanthus (93)</td>
<td>17613</td>
</tr>
<tr>
<td>Amphiuira sp. #1 (90)</td>
<td>17618</td>
</tr>
<tr>
<td>Amphiodia periercta-urtica complex (425)</td>
<td>40489</td>
</tr>
<tr>
<td>Group/Species (MCR Code No.)</td>
<td>DMRP Code No.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ophiuroidea (cont.)</td>
<td></td>
</tr>
<tr>
<td>Ophiuridae</td>
<td></td>
</tr>
<tr>
<td>Ophiura lutkeni (86)</td>
<td>17610</td>
</tr>
<tr>
<td>Ophiura sarsi (91)</td>
<td>17614</td>
</tr>
<tr>
<td>Ophiura spp. (92)</td>
<td>17612</td>
</tr>
<tr>
<td>Gorgonocephalidae</td>
<td></td>
</tr>
<tr>
<td>Gorgonocephalus caryi (572)</td>
<td>17615</td>
</tr>
<tr>
<td>Ophiolepidae</td>
<td></td>
</tr>
<tr>
<td>Ophiomusium jolliensis (573)</td>
<td>17616</td>
</tr>
<tr>
<td>Asteroidea</td>
<td></td>
</tr>
<tr>
<td>Luidiidae</td>
<td></td>
</tr>
<tr>
<td>Luidia foliolata (570)</td>
<td>40265</td>
</tr>
<tr>
<td>Asteriidae</td>
<td></td>
</tr>
<tr>
<td>Pisaster brevispinus (571)</td>
<td>40266</td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
</tr>
<tr>
<td>Nemertea sp. #1 (438)</td>
<td>40267</td>
</tr>
<tr>
<td>Nemertea sp. #2 (466)</td>
<td>40268</td>
</tr>
<tr>
<td>Nemertea sp. #3 (451)</td>
<td>40269</td>
</tr>
<tr>
<td>Nemertea sp. #4 (456)</td>
<td>40270</td>
</tr>
<tr>
<td>Nemertea sp. #5 (460)</td>
<td>40271</td>
</tr>
<tr>
<td>Nemertea sp. #6 (463)</td>
<td>40272</td>
</tr>
<tr>
<td>Nemertea sp. #7 (471)</td>
<td>40273</td>
</tr>
<tr>
<td>Nemertea sp. #8 (472)</td>
<td>40274</td>
</tr>
<tr>
<td>Nemertea sp. #9 (473)</td>
<td>40275</td>
</tr>
<tr>
<td>Nemertea sp. #11 (475)</td>
<td>40277</td>
</tr>
<tr>
<td>Nemertea sp. #12 (485)</td>
<td>40278</td>
</tr>
<tr>
<td>Nemertea sp. #13 (510)</td>
<td>40279</td>
</tr>
<tr>
<td>Nemertea sp. #14 (536)</td>
<td>40280</td>
</tr>
<tr>
<td>Nemertea spp. (361)</td>
<td>18700</td>
</tr>
<tr>
<td>Annelida</td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td></td>
</tr>
<tr>
<td>Polychaeta spp. (369)</td>
<td>19001</td>
</tr>
<tr>
<td>Polynoidae</td>
<td></td>
</tr>
<tr>
<td>Polynoidae spp. (333)</td>
<td>19020</td>
</tr>
<tr>
<td>Antinoella macrolepida? (395)</td>
<td>40281</td>
</tr>
<tr>
<td>Harmothoe nr. lunulata (465)</td>
<td>19027</td>
</tr>
<tr>
<td>Hesperone sp. #1 (466)</td>
<td>40282</td>
</tr>
<tr>
<td>Lepidasthenia berkeleyae (480)</td>
<td>40100</td>
</tr>
<tr>
<td>Lepidasthenia longicirrata (474)</td>
<td>40603</td>
</tr>
<tr>
<td>Eunoe sp. #1 (372)</td>
<td>40196</td>
</tr>
<tr>
<td>Gattyana coliata (545)</td>
<td>40283</td>
</tr>
<tr>
<td>Polynoe sp. #1 (546)</td>
<td>40284</td>
</tr>
<tr>
<td>Lepidonotus sp. #1 (268)</td>
<td>19034</td>
</tr>
<tr>
<td>Tenonia kitsapensis</td>
<td>40102</td>
</tr>
</tbody>
</table>

315
Table C-IIA (continued)

<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annelida (cont.)</td>
<td></td>
</tr>
<tr>
<td>Sigalionidae</td>
<td></td>
</tr>
<tr>
<td>Pholoe minuta (322)</td>
<td>19061</td>
</tr>
<tr>
<td>Sthenelais tertiaglabra (348)</td>
<td>19068</td>
</tr>
<tr>
<td>Thalenessa spinosa (354)</td>
<td>40118</td>
</tr>
<tr>
<td>Sigalionidae spp. (484)</td>
<td>19055</td>
</tr>
<tr>
<td>Paraonidae</td>
<td></td>
</tr>
<tr>
<td>Aricidea ramosa (226)</td>
<td></td>
</tr>
<tr>
<td>Aricidea #1 (227)</td>
<td>19113</td>
</tr>
<tr>
<td>Aedicira #1 (392)</td>
<td>19114</td>
</tr>
<tr>
<td>Aricidea neosuecica (448)</td>
<td>40094</td>
</tr>
<tr>
<td>Aricidea spp. (355)</td>
<td>19111</td>
</tr>
<tr>
<td>Paraonella platybranchia (317)</td>
<td>40154</td>
</tr>
<tr>
<td>Paraonis gracilis oculatus (442)</td>
<td>40095</td>
</tr>
<tr>
<td>Paraonidae spp. (291)</td>
<td>19110</td>
</tr>
<tr>
<td>Hesionidae</td>
<td></td>
</tr>
<tr>
<td>Hesiospina #1 (265)</td>
<td>40286</td>
</tr>
<tr>
<td>Podarkeopsis brevipalpa (459)</td>
<td>40287</td>
</tr>
<tr>
<td>Hesionidae spp. (263)</td>
<td>19120</td>
</tr>
<tr>
<td>Hesionidae #1 (414)</td>
<td>40288</td>
</tr>
<tr>
<td>Hesionidae #2 (420)</td>
<td>40289</td>
</tr>
<tr>
<td>Cossuridae</td>
<td></td>
</tr>
<tr>
<td>Cossura nr. laeviseta (449)</td>
<td>40290</td>
</tr>
<tr>
<td>Cossura spp. (262)</td>
<td>19131</td>
</tr>
<tr>
<td>Phyllodocidae</td>
<td></td>
</tr>
<tr>
<td>Eteone californica (245)</td>
<td>19137</td>
</tr>
<tr>
<td>Anaitides mucosa (324)</td>
<td>40291</td>
</tr>
<tr>
<td>Anaitides groenlandica (323)</td>
<td>40292</td>
</tr>
<tr>
<td>Anaitides longipes (544)</td>
<td>40293</td>
</tr>
<tr>
<td>Eumida sanguinea (250)</td>
<td>19149</td>
</tr>
<tr>
<td>Eteone #1 (393)</td>
<td>40294</td>
</tr>
<tr>
<td>Eteone #2 (224)</td>
<td>40295</td>
</tr>
<tr>
<td>Eteone (Mysta) barbata (231)</td>
<td>40296</td>
</tr>
<tr>
<td>Eteone longa (307)</td>
<td>19160</td>
</tr>
<tr>
<td>Eteone #5 (314)</td>
<td>40297</td>
</tr>
<tr>
<td>Eteone #6 (244)</td>
<td>40298</td>
</tr>
<tr>
<td>Eteone #7 (271)</td>
<td>40299</td>
</tr>
<tr>
<td>Eteone spp. (246)</td>
<td>19155</td>
</tr>
<tr>
<td>Eumida spp. (285)</td>
<td>40492</td>
</tr>
<tr>
<td>Anaitides sp. #3 (383)</td>
<td>40300</td>
</tr>
<tr>
<td>Anaitides sp. #4 (272)</td>
<td>40301</td>
</tr>
<tr>
<td>Anaitides spp. (340)</td>
<td>19143</td>
</tr>
<tr>
<td>Phyllodocidae sp. #1 (248)</td>
<td>40302</td>
</tr>
<tr>
<td>Phyllodocidae sp. #2 (257)</td>
<td>40303</td>
</tr>
<tr>
<td>Phyllodocidae spp. (325)</td>
<td>19136</td>
</tr>
<tr>
<td>Paranaitis polynoides (551)</td>
<td>19153</td>
</tr>
<tr>
<td>Eulalia leavicornuta (587)</td>
<td>40304</td>
</tr>
</tbody>
</table>
Table C-IIA (continued)

<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annelida-Polychaeta (cont.)</td>
<td></td>
</tr>
<tr>
<td>Syllidae</td>
<td></td>
</tr>
<tr>
<td>Autolytus cornutus (269)</td>
<td>19212</td>
</tr>
<tr>
<td>Autolytus spp. (388)</td>
<td>19202</td>
</tr>
<tr>
<td>Exogone lourei (478)</td>
<td>40110</td>
</tr>
<tr>
<td>Exogone spp. (432)</td>
<td>19217</td>
</tr>
<tr>
<td>Langerhansia heterochaeta (479)</td>
<td>40305</td>
</tr>
<tr>
<td>Typosyllis alternata (477)</td>
<td>40306</td>
</tr>
<tr>
<td>Typosyllis hyalina (254)</td>
<td>40307</td>
</tr>
<tr>
<td>Typosyllis nr. hyalina (255)</td>
<td>40491</td>
</tr>
<tr>
<td>Syllidae spp. (350)</td>
<td>19200</td>
</tr>
<tr>
<td>Nereidae</td>
<td></td>
</tr>
<tr>
<td>Nereis zonata (398)</td>
<td>19231</td>
</tr>
<tr>
<td>Nereis spp (308)</td>
<td>19232</td>
</tr>
<tr>
<td>Nereidae spp. (306)</td>
<td>19220</td>
</tr>
<tr>
<td>Nephtyidae</td>
<td></td>
</tr>
<tr>
<td>Nephtys caeca (301)</td>
<td>19241</td>
</tr>
<tr>
<td>Nephtys caecoides (302)</td>
<td>19242</td>
</tr>
<tr>
<td>Nephtys californiensis (303)</td>
<td>19243</td>
</tr>
<tr>
<td>Nephtys ferruginea (390)</td>
<td>19244</td>
</tr>
<tr>
<td>Nephtys glabra (304)</td>
<td>19251</td>
</tr>
<tr>
<td>Nephtys cornuta (284)</td>
<td>40308</td>
</tr>
<tr>
<td>Nephtys cornuta franciscanum (464)</td>
<td>40309</td>
</tr>
<tr>
<td>Nephtys rickettsi (440)</td>
<td>40310</td>
</tr>
<tr>
<td>Nephtys spp. (373)</td>
<td>19247</td>
</tr>
<tr>
<td>Nephtyidae spp. (295)</td>
<td>19240</td>
</tr>
<tr>
<td>Glyceridae</td>
<td></td>
</tr>
<tr>
<td>Glycera capitata (252)</td>
<td>19262</td>
</tr>
<tr>
<td>Glycera convoluta (385)</td>
<td>40311</td>
</tr>
<tr>
<td>Glycera sp. #1 (426)</td>
<td>40312</td>
</tr>
<tr>
<td>Glycera spp. (253)</td>
<td>19265</td>
</tr>
<tr>
<td>Goniadidae</td>
<td></td>
</tr>
<tr>
<td>Goniada maculata (259)</td>
<td>19287</td>
</tr>
<tr>
<td>Glycinde picta (408)</td>
<td>40149</td>
</tr>
<tr>
<td>Glycinde sp. #2 (256)</td>
<td>40313</td>
</tr>
<tr>
<td>Glycinde spp. (258)</td>
<td>19284</td>
</tr>
<tr>
<td>Goniadidae spp. (407)</td>
<td>19280</td>
</tr>
<tr>
<td>Onuphidae</td>
<td></td>
</tr>
<tr>
<td>Nothria iridescens (310)</td>
<td>19304</td>
</tr>
<tr>
<td>Nothria geophiliformis? (311)</td>
<td>40314</td>
</tr>
<tr>
<td>Nothria spp. (235)</td>
<td>19306</td>
</tr>
<tr>
<td>Lumbrineridae</td>
<td></td>
</tr>
<tr>
<td>Lumbrineris bicirrata (329)</td>
<td>19341</td>
</tr>
<tr>
<td>Lumbrineris zonata (436)</td>
<td>19345</td>
</tr>
</tbody>
</table>

317
<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaeta-Lumbrineridae (cont.)</td>
<td></td>
</tr>
<tr>
<td>Lumbrineris latreilli (273)</td>
<td>19349</td>
</tr>
<tr>
<td>Lumbrineris luti (275)</td>
<td>19350</td>
</tr>
<tr>
<td>Lumbrineris simalibris (276)</td>
<td>19351</td>
</tr>
<tr>
<td>Lumbrineris minima (454)</td>
<td>40315</td>
</tr>
<tr>
<td>Lumbrineris cf. longensis (274)</td>
<td>19359</td>
</tr>
<tr>
<td>Lumbrineris spp. (277)</td>
<td>19347</td>
</tr>
<tr>
<td>Ninoe gemmea (309)</td>
<td>19346</td>
</tr>
<tr>
<td>Arabellidae</td>
<td></td>
</tr>
<tr>
<td>Arabella spp. (283)</td>
<td>19382</td>
</tr>
<tr>
<td>Notocirrus californiensis (238)</td>
<td>40316</td>
</tr>
<tr>
<td>Arabellidae sp. #1 (455)</td>
<td>40317</td>
</tr>
<tr>
<td>Arabellidae sp. #3 (433)</td>
<td>40318</td>
</tr>
<tr>
<td>Arabellidae sp. #4 (270)</td>
<td>40319</td>
</tr>
<tr>
<td>Arabellidae spp. (387)</td>
<td>19380</td>
</tr>
<tr>
<td>Dorvilleidae</td>
<td></td>
</tr>
<tr>
<td>Schistomaringos annulata (458)</td>
<td>40320</td>
</tr>
<tr>
<td>Dorvilleidae spp. (287)</td>
<td>19400</td>
</tr>
<tr>
<td>Orbiniidae</td>
<td></td>
</tr>
<tr>
<td>Hoploscoloplos elongatus (261)</td>
<td>19421</td>
</tr>
<tr>
<td>Scoloplos armiger (341)</td>
<td>19427</td>
</tr>
<tr>
<td>Scoloplos spp. (305)</td>
<td>19429</td>
</tr>
<tr>
<td>Phylo felix (326)</td>
<td>40321</td>
</tr>
<tr>
<td>Orbinia sp. #1 (467)</td>
<td>40092</td>
</tr>
<tr>
<td>Orbinidae spp. (315)</td>
<td>19420</td>
</tr>
<tr>
<td>Spionidae</td>
<td></td>
</tr>
<tr>
<td>Polydora caulleryi (288)</td>
<td>19445</td>
</tr>
<tr>
<td>Polydora sp. #2 (292)</td>
<td>40322</td>
</tr>
<tr>
<td>Polydora spp. (332)</td>
<td>19451</td>
</tr>
<tr>
<td>Laonice cirrata (266)</td>
<td>19442</td>
</tr>
<tr>
<td>Spiophanes bombyx (344)</td>
<td>19453</td>
</tr>
<tr>
<td>Spiophanes berkeleyorum (345)</td>
<td>40155</td>
</tr>
<tr>
<td>Prionospio malmyreni (336)</td>
<td>19457</td>
</tr>
<tr>
<td>Prionospio spp. (338)</td>
<td>19459</td>
</tr>
<tr>
<td>Roccardia basilaria? (289)</td>
<td>40323</td>
</tr>
<tr>
<td>Munispio cirrifer (355)</td>
<td>40324</td>
</tr>
<tr>
<td>Paraprionospio pinnata (337)</td>
<td>19456</td>
</tr>
<tr>
<td>Scolelepsis cirratulus (384)</td>
<td>40325</td>
</tr>
<tr>
<td>Spiio filicornis (343)</td>
<td>40037</td>
</tr>
<tr>
<td>Spionidae spp. (370)</td>
<td>19430</td>
</tr>
<tr>
<td>Magelonidae</td>
<td></td>
</tr>
<tr>
<td>Magelona longicornis (278)</td>
<td>19467</td>
</tr>
<tr>
<td>Magelona pitelkai (280)</td>
<td>40326</td>
</tr>
<tr>
<td>Magelona sacculata (279)</td>
<td>40150</td>
</tr>
<tr>
<td>Magelona spp. (281)</td>
<td>19463</td>
</tr>
</tbody>
</table>
Table C-IIA (continued)

<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaeta (cont.)</td>
<td></td>
</tr>
<tr>
<td>Chaetopteridae</td>
<td></td>
</tr>
<tr>
<td>Mesochaetopterus sp. #1 (399)</td>
<td>40327</td>
</tr>
<tr>
<td>Spiochaetopterus costarum (352)</td>
<td>40328</td>
</tr>
<tr>
<td>Chaetopteridae spp. (403)</td>
<td>19480</td>
</tr>
<tr>
<td>Cirratulidae</td>
<td></td>
</tr>
<tr>
<td>Tharyx tesselata (356)</td>
<td>19512</td>
</tr>
<tr>
<td>Tharyx multifilis (358)</td>
<td>40329</td>
</tr>
<tr>
<td>Tharyx sp. #1 (357)</td>
<td>40119</td>
</tr>
<tr>
<td>Tharyx sp. #3 (433)</td>
<td>40330</td>
</tr>
<tr>
<td>Tharyx spp. (359)</td>
<td>19510</td>
</tr>
<tr>
<td>Chaetozone setosa (237)</td>
<td>19515</td>
</tr>
<tr>
<td>Chaetozone nr. berkeleyorum (239)</td>
<td>40331</td>
</tr>
<tr>
<td>Cirratulidae spp. (240)</td>
<td>19500</td>
</tr>
<tr>
<td>Flabelligeridae</td>
<td></td>
</tr>
<tr>
<td>Brada pluribranchiata (470)</td>
<td>40332</td>
</tr>
<tr>
<td>Pherusa papillata (468)</td>
<td>40333</td>
</tr>
<tr>
<td>Flabelligeridae spp. (251)</td>
<td>19520</td>
</tr>
<tr>
<td>Opheliidae</td>
<td></td>
</tr>
<tr>
<td>Armandia bioculata (288)</td>
<td>19541</td>
</tr>
<tr>
<td>Travisia brevis (482)</td>
<td>19546</td>
</tr>
<tr>
<td>Travisia gigas (360)</td>
<td>19550</td>
</tr>
<tr>
<td>Ophelia sp. #1 (313)</td>
<td>40151</td>
</tr>
<tr>
<td>Ophelina acuminata (220)</td>
<td>40334</td>
</tr>
<tr>
<td>Ophelina sp. #1 (541)</td>
<td>40335</td>
</tr>
<tr>
<td>Opheliidae spp. (342)</td>
<td>19540</td>
</tr>
<tr>
<td>Maldanidae</td>
<td></td>
</tr>
<tr>
<td>Maldane sarsi (282)</td>
<td>19562</td>
</tr>
<tr>
<td>Asychis disparidentata (406)</td>
<td>40336</td>
</tr>
<tr>
<td>Asychis sp. #2 (457)</td>
<td>40337</td>
</tr>
<tr>
<td>Asychis spp. (462)</td>
<td>19566</td>
</tr>
<tr>
<td>Isocirrus sp. #1 (453)</td>
<td>40338</td>
</tr>
<tr>
<td>Praxillella affinis pacifica (445)</td>
<td>40339</td>
</tr>
<tr>
<td>Prixxillella gracilis (334)</td>
<td>40340</td>
</tr>
<tr>
<td>Rhodine bitorguata (339)</td>
<td>40341</td>
</tr>
<tr>
<td>Maldanidae sp. #4 (286)</td>
<td>40342</td>
</tr>
<tr>
<td>Maldanidae sp. #14 (444)</td>
<td>40343</td>
</tr>
<tr>
<td>Maldanidae sp. #19 (299)</td>
<td>40344</td>
</tr>
<tr>
<td>Maldanidae sp. #20 (241)</td>
<td>40345</td>
</tr>
<tr>
<td>Maldinidae sp. #21 (241)</td>
<td>40346</td>
</tr>
<tr>
<td>Maldinidae spp. (293)</td>
<td>19560</td>
</tr>
<tr>
<td>Oweniidae</td>
<td></td>
</tr>
<tr>
<td>Myriochele heeri (437)</td>
<td>19581</td>
</tr>
<tr>
<td>Myriochele oculata (300)</td>
<td>40347</td>
</tr>
<tr>
<td>Myriochele spp. (483)</td>
<td>19583</td>
</tr>
<tr>
<td>Owenia collaris (316)</td>
<td>40157</td>
</tr>
<tr>
<td>Oweniidae spp. (397)</td>
<td>19580</td>
</tr>
</tbody>
</table>
Table C-IIA (continued)

<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaeta (cont.)</td>
<td></td>
</tr>
<tr>
<td>Sternaspidae</td>
<td></td>
</tr>
<tr>
<td>Sternaspis fossor (347)</td>
<td>40116</td>
</tr>
<tr>
<td>Arenicolidae</td>
<td></td>
</tr>
<tr>
<td>Abarenicola sp. #1 (219)</td>
<td>40348</td>
</tr>
<tr>
<td>Arenicolidae spp. (386)</td>
<td>19620</td>
</tr>
<tr>
<td>Capitellidae</td>
<td></td>
</tr>
<tr>
<td>Capitella capitata (232)</td>
<td>19641</td>
</tr>
<tr>
<td>Capitella capitata oculata</td>
<td>19649</td>
</tr>
<tr>
<td>Capitella spp. (540)</td>
<td>19654</td>
</tr>
<tr>
<td>Mediomastus californiensis</td>
<td>19643</td>
</tr>
<tr>
<td>Notomastus hemipodus (312)</td>
<td>19644</td>
</tr>
<tr>
<td>Notomastus lineatus (298)</td>
<td>40349</td>
</tr>
<tr>
<td>Heteromastus filobranchus</td>
<td>19651</td>
</tr>
<tr>
<td>Heteromastus sp. #1 (296)</td>
<td>40350</td>
</tr>
<tr>
<td>Heteromastus spp. (394)</td>
<td>19653</td>
</tr>
<tr>
<td>Barantolla americana (236)</td>
<td>40351</td>
</tr>
<tr>
<td>Decamastus gracilis (242)</td>
<td>40352</td>
</tr>
<tr>
<td>Capitellidae spp. (368)</td>
<td>19640</td>
</tr>
<tr>
<td>Capitellidae sp. #1 (346)</td>
<td>40353</td>
</tr>
<tr>
<td>Pectinariidae</td>
<td></td>
</tr>
<tr>
<td>Pectinaria californiensis</td>
<td>19661</td>
</tr>
<tr>
<td>Pectinaria sp. #1 (418)</td>
<td>19664</td>
</tr>
<tr>
<td>Pectinaria (Cistenides) granulata (319)</td>
<td>40354</td>
</tr>
<tr>
<td>Pectinaria spp. (321)</td>
<td>19663</td>
</tr>
<tr>
<td>Ampharetidae</td>
<td></td>
</tr>
<tr>
<td>Anobothrus gracilis? (389)</td>
<td>19702</td>
</tr>
<tr>
<td>Melinna oculata (297)</td>
<td>19708</td>
</tr>
<tr>
<td>Mellina spp. (396)</td>
<td>19706</td>
</tr>
<tr>
<td>Ampharete acutifrons (221)</td>
<td>19710</td>
</tr>
<tr>
<td>Ampharete arctica (439)</td>
<td>19713</td>
</tr>
<tr>
<td>Ampharete spp. (233)</td>
<td>19709</td>
</tr>
<tr>
<td>Ampharete sp. #1 (452)</td>
<td>40123</td>
</tr>
<tr>
<td>Ampharetidae spp. (290)</td>
<td>19700</td>
</tr>
<tr>
<td>Terebellidae</td>
<td></td>
</tr>
<tr>
<td>Artacama coniferi (260)</td>
<td>19722</td>
</tr>
<tr>
<td>Polycirrus spp. (331)</td>
<td>19729</td>
</tr>
<tr>
<td>Terebellides stroemi (447)</td>
<td>19731</td>
</tr>
<tr>
<td>Pista cristata (328)</td>
<td>19735</td>
</tr>
<tr>
<td>Pista moorei (330)</td>
<td>19736</td>
</tr>
<tr>
<td>Pista spp. (441)</td>
<td>19734</td>
</tr>
<tr>
<td>Artacamella hancocki (229)</td>
<td>40355</td>
</tr>
<tr>
<td>Neoamphitrite robusta (267)</td>
<td>40356</td>
</tr>
<tr>
<td>Thelepus setosus (318)</td>
<td>40357</td>
</tr>
<tr>
<td>Lanassa sp. #1 (349)</td>
<td>40358</td>
</tr>
<tr>
<td>Terebellidae spp. (353)</td>
<td>19720</td>
</tr>
<tr>
<td>Group/Species (MCR Code No.)</td>
<td>DMRP Code No.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Polychaeta (cont.)</td>
<td></td>
</tr>
<tr>
<td>Sabellidae</td>
<td></td>
</tr>
<tr>
<td>Chone albocincta (481)</td>
<td>40103</td>
</tr>
<tr>
<td>Sabellidae spp. (405)</td>
<td>19740</td>
</tr>
<tr>
<td>Pilaridae</td>
<td></td>
</tr>
<tr>
<td>Sigambra tentaculata (450)</td>
<td>19867</td>
</tr>
<tr>
<td>Parandalia fauveli (435)</td>
<td>40359</td>
</tr>
<tr>
<td>Pilargis berkeleyae (434)</td>
<td>40360</td>
</tr>
<tr>
<td>Pilargidae spp. (327)</td>
<td>19860</td>
</tr>
<tr>
<td>Apistobranchidae</td>
<td></td>
</tr>
<tr>
<td>Apistobranchus ornatus (225)</td>
<td>40362</td>
</tr>
<tr>
<td>Disomidae</td>
<td></td>
</tr>
<tr>
<td>Trochochaeta franciscanum (243)</td>
<td>40364</td>
</tr>
<tr>
<td>Scalibregmidae</td>
<td></td>
</tr>
<tr>
<td>Scalibregma inflatum (409)</td>
<td>19803</td>
</tr>
<tr>
<td>Sphaerodoridae</td>
<td></td>
</tr>
<tr>
<td>Sphaeordoropsis sphaerulifer (469)</td>
<td>40104</td>
</tr>
<tr>
<td>Sphaerodoridae spp. (461)</td>
<td>40105</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta spp. (422)</td>
<td>19900</td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
</tr>
<tr>
<td>Hirudinea spp. (543)</td>
<td>20271</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
</tr>
<tr>
<td>Gastropoda spp. (34)</td>
<td>21100</td>
</tr>
<tr>
<td>Gastropoda sp. #1 (578)</td>
<td>40365</td>
</tr>
<tr>
<td>Archaeogastropoda</td>
<td></td>
</tr>
<tr>
<td>Acmaeidae</td>
<td></td>
</tr>
<tr>
<td>Collisella digitalis? (521)</td>
<td>40366</td>
</tr>
<tr>
<td>Opisthobranchiata</td>
<td></td>
</tr>
<tr>
<td>Aglajidae</td>
<td></td>
</tr>
<tr>
<td>Aglaja diomedea (30)</td>
<td>40146</td>
</tr>
<tr>
<td>Gastropertidae</td>
<td></td>
</tr>
<tr>
<td>Gastroperton pacificum (509)</td>
<td>40369</td>
</tr>
<tr>
<td>Scaphandridae</td>
<td></td>
</tr>
<tr>
<td>Cylichna attonsa (1)</td>
<td>21233</td>
</tr>
<tr>
<td>Acteocina? sp. #1 (518)</td>
<td>40370</td>
</tr>
<tr>
<td>Pyramidellidae</td>
<td></td>
</tr>
<tr>
<td>Turbonilla aurantia (10)</td>
<td>21267</td>
</tr>
<tr>
<td>Turbonilla sp. #1 (11)</td>
<td>21268</td>
</tr>
<tr>
<td>Turbonilla sp. #2 (12)</td>
<td>21269</td>
</tr>
<tr>
<td>Odostomia sp. #1 (6)</td>
<td>21270</td>
</tr>
<tr>
<td>Odostomia spp. (539)</td>
<td>21265</td>
</tr>
</tbody>
</table>

321
Table C-IIA (continued)

<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mollusca-Opisthobranchiata (cont.)</td>
<td></td>
</tr>
<tr>
<td>Opistobranchia sp. #1 (234)</td>
<td>40371</td>
</tr>
<tr>
<td>Opistobranchia sp. #2 (249)</td>
<td>40372</td>
</tr>
<tr>
<td>Nudibranchiata</td>
<td></td>
</tr>
<tr>
<td>Doridacea sp. #1 (18)</td>
<td>40373</td>
</tr>
<tr>
<td>Arminidae</td>
<td></td>
</tr>
<tr>
<td>Armina californica (416)</td>
<td>40375</td>
</tr>
<tr>
<td>Prosobranchia</td>
<td></td>
</tr>
<tr>
<td>Epitoniiidae</td>
<td></td>
</tr>
<tr>
<td>Epitonium tinctum (16)</td>
<td>40376</td>
</tr>
<tr>
<td>Naticidae</td>
<td></td>
</tr>
<tr>
<td>Polinices pallidus (17)</td>
<td>21545</td>
</tr>
<tr>
<td>Muricidae</td>
<td></td>
</tr>
<tr>
<td>Trachypollia sp. #1 (538)</td>
<td>40377</td>
</tr>
<tr>
<td>Columbellidae</td>
<td></td>
</tr>
<tr>
<td>Mitrella gouldii (2)</td>
<td>21596</td>
</tr>
<tr>
<td>Neptuneidae</td>
<td></td>
</tr>
<tr>
<td>Neptuneidae sp. #1 (14)</td>
<td>40379</td>
</tr>
<tr>
<td>Nassariidae</td>
<td></td>
</tr>
<tr>
<td>Nassarius fossatus (3)</td>
<td>21626</td>
</tr>
<tr>
<td>Nassarius mendicus (4)</td>
<td>21627</td>
</tr>
<tr>
<td>Nassarius spp. (5)</td>
<td>21625</td>
</tr>
<tr>
<td>Olividae</td>
<td></td>
</tr>
<tr>
<td>Olivella baetica (7)</td>
<td>21655</td>
</tr>
<tr>
<td>Olivella biplicata (8)</td>
<td>21656</td>
</tr>
<tr>
<td>Olivella pycna (9)</td>
<td>21657</td>
</tr>
<tr>
<td>Olivella spp. (514)</td>
<td>21654</td>
</tr>
<tr>
<td>Turridae</td>
<td></td>
</tr>
<tr>
<td>Oenopota turricula? (13)</td>
<td>40380</td>
</tr>
<tr>
<td>Ophiodermella cancellata (15)</td>
<td>40381</td>
</tr>
<tr>
<td>Ophiodermella sp. #1 (351)</td>
<td>40382</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td></td>
</tr>
<tr>
<td>Pectinidae</td>
<td></td>
</tr>
<tr>
<td>Pectinidae sp. #1 (577)</td>
<td>40383</td>
</tr>
<tr>
<td>Propeamussium davidsoni (579)</td>
<td>40395</td>
</tr>
<tr>
<td>Nuculidae</td>
<td></td>
</tr>
<tr>
<td>Acila castrensis (19)</td>
<td>21931</td>
</tr>
<tr>
<td>Nucula tenuis (20)</td>
<td>21933</td>
</tr>
<tr>
<td>Nuculanidae</td>
<td></td>
</tr>
<tr>
<td>Yoldia seminuda (21)</td>
<td>21968</td>
</tr>
<tr>
<td>Yoldia spp. (22)</td>
<td>21966</td>
</tr>
<tr>
<td>Nuculana hamata (23)</td>
<td>40384</td>
</tr>
<tr>
<td>Nuculanidae spp. (477)</td>
<td>21960</td>
</tr>
</tbody>
</table>

322
<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mollusca-Pelecypoda (cont.)</td>
<td></td>
</tr>
<tr>
<td>Nucinellidae</td>
<td></td>
</tr>
<tr>
<td>Huxleyia munita (59)</td>
<td>21991</td>
</tr>
<tr>
<td>Mytilidae</td>
<td></td>
</tr>
<tr>
<td>Musculus sp. #1 (43)</td>
<td>22039</td>
</tr>
<tr>
<td>Musculus sp. #2 (75)</td>
<td>40385</td>
</tr>
<tr>
<td>Musculus laevigata (28)</td>
<td>22040</td>
</tr>
<tr>
<td>Crenella decussata</td>
<td>22041</td>
</tr>
<tr>
<td>Carditidae</td>
<td></td>
</tr>
<tr>
<td>Cyclocardia ventricosa (54)</td>
<td>40086</td>
</tr>
<tr>
<td>Thyasiridae</td>
<td></td>
</tr>
<tr>
<td>Axinopsida serricata (24)</td>
<td>22203</td>
</tr>
<tr>
<td>Thyasira flexuosa (25)</td>
<td>22205</td>
</tr>
<tr>
<td>Adontorhina cyclia (26)</td>
<td>40038</td>
</tr>
<tr>
<td>Veneridae</td>
<td></td>
</tr>
<tr>
<td>Compsomyax subdiaphana (56)</td>
<td>40041</td>
</tr>
<tr>
<td>Psephidia lordi (58)</td>
<td>40088</td>
</tr>
<tr>
<td>Transennella tantilla? (46)</td>
<td>40084</td>
</tr>
<tr>
<td>Tellinidae</td>
<td></td>
</tr>
<tr>
<td>Macoma moesta alaskana (29)</td>
<td>22302</td>
</tr>
<tr>
<td>Macoma calcera (124)</td>
<td>22322</td>
</tr>
<tr>
<td>Macoma carlottensis (32)</td>
<td>22304</td>
</tr>
<tr>
<td>Macoma elimata? (33)</td>
<td>40386</td>
</tr>
<tr>
<td>Macoma nasuta (31)</td>
<td>22323</td>
</tr>
<tr>
<td>Macoma balthica? (391)</td>
<td>22324</td>
</tr>
<tr>
<td>Macoma sp. #2 (164)</td>
<td>22306</td>
</tr>
<tr>
<td>Macoma spp. (431)</td>
<td>22326</td>
</tr>
<tr>
<td>Tellina modesta (36)</td>
<td>22307</td>
</tr>
<tr>
<td>Tellina carpenteri (37)</td>
<td>22346</td>
</tr>
<tr>
<td>Tellina sp. #5 (525)</td>
<td>40387</td>
</tr>
<tr>
<td>Tellina spp. (38)</td>
<td>22329</td>
</tr>
<tr>
<td>Tellinidae sp. #1 (35)</td>
<td>40388</td>
</tr>
<tr>
<td>Tellinidae sp. #3 (48)</td>
<td>40389</td>
</tr>
<tr>
<td>Solenidae</td>
<td></td>
</tr>
<tr>
<td>Siliqua patula (27)</td>
<td>22351</td>
</tr>
<tr>
<td>Lyonsiidae</td>
<td></td>
</tr>
<tr>
<td>Lyonsia californica (39)</td>
<td>40390</td>
</tr>
<tr>
<td>Lyonsia inflata? (40)</td>
<td>40391</td>
</tr>
<tr>
<td>Lyonsia sp. #2 (41)</td>
<td>22506</td>
</tr>
<tr>
<td>Thracia sp. #1 (65)</td>
<td>40392</td>
</tr>
<tr>
<td>Lucinidae</td>
<td></td>
</tr>
<tr>
<td>Lucinoma annulata (55)</td>
<td>40087</td>
</tr>
<tr>
<td>Montacutidae</td>
<td></td>
</tr>
<tr>
<td>Mysella tumida (57)</td>
<td>22574</td>
</tr>
<tr>
<td>Orobitella rugifera (47)</td>
<td>40395</td>
</tr>
<tr>
<td>Tomburchus sp. #1 (531)</td>
<td>40394</td>
</tr>
<tr>
<td>Group/Species (MCR Code No.)</td>
<td>DMRP Code No.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Mollusca (cont.)</td>
<td></td>
</tr>
<tr>
<td>Pandoridae</td>
<td></td>
</tr>
<tr>
<td>Pandora filosa (50)</td>
<td>22603</td>
</tr>
<tr>
<td>Pandora grandis (51)</td>
<td>22604</td>
</tr>
<tr>
<td>Pandora bilirata? (53)</td>
<td>22605</td>
</tr>
<tr>
<td>Pandora punctata (52)</td>
<td>22609</td>
</tr>
<tr>
<td>Cuspidariidae</td>
<td></td>
</tr>
<tr>
<td>Cardiomya oldroydi (42)</td>
<td>22621</td>
</tr>
<tr>
<td>Pelecypoda sp. #1 (60)</td>
<td>40396</td>
</tr>
<tr>
<td>Pelecypoda sp. #2 (61)</td>
<td>40397</td>
</tr>
<tr>
<td>Pelecypoda sp. #3 (62)</td>
<td>40398</td>
</tr>
<tr>
<td>Pelecypoda sp. #4 (415)</td>
<td>40399</td>
</tr>
<tr>
<td>Pelecypoda sp. #7 (63)</td>
<td>40400</td>
</tr>
<tr>
<td>Pelecypoda sp. #9 (526)</td>
<td>40401</td>
</tr>
<tr>
<td>Pelecypoda sp. #10 (3/4)</td>
<td>40402</td>
</tr>
<tr>
<td>Pelecypoda sp. #11 (64)</td>
<td>40403</td>
</tr>
<tr>
<td>Pelecypoda sp. #15 (66)</td>
<td>40404</td>
</tr>
<tr>
<td>Pelecypoda sp. #20 (519)</td>
<td>40405</td>
</tr>
<tr>
<td>Pelecypoda spp. (45)</td>
<td>21900</td>
</tr>
<tr>
<td>Aplacophora (=Amphineura)</td>
<td></td>
</tr>
<tr>
<td>Neomeniida sp. #1 (534)</td>
<td>40406</td>
</tr>
<tr>
<td>Chaetodermatidae sp. #1 (49)</td>
<td>40407</td>
</tr>
<tr>
<td>Chaetodermatidae spp. (530)</td>
<td>40408</td>
</tr>
<tr>
<td>Scaphopoda</td>
<td></td>
</tr>
<tr>
<td>Dentaliidae</td>
<td></td>
</tr>
<tr>
<td>Dentalium rectius (68)</td>
<td>22732</td>
</tr>
<tr>
<td>Denteliidae spp. (67)</td>
<td>22726</td>
</tr>
<tr>
<td>Cephalopoda</td>
<td></td>
</tr>
<tr>
<td>Sepiolidae</td>
<td></td>
</tr>
<tr>
<td>Rossia pacifica (576)</td>
<td>22811</td>
</tr>
<tr>
<td>Octopodidae</td>
<td></td>
</tr>
<tr>
<td>Octopus sp. #1* (575)</td>
<td>40409</td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
</tr>
<tr>
<td>Cylindroleberididae</td>
<td></td>
</tr>
<tr>
<td>Bathyleberis sp. #1* (194)</td>
<td>40411</td>
</tr>
<tr>
<td>Cyprinidae</td>
<td></td>
</tr>
<tr>
<td>Euphilomodes carcharodonta (193)</td>
<td>23299</td>
</tr>
<tr>
<td>Euphilomodes producta (574)</td>
<td>40412</td>
</tr>
<tr>
<td>Sclerodoncha trituberculata (195)</td>
<td>23301</td>
</tr>
<tr>
<td>Rutidermatidae</td>
<td></td>
</tr>
<tr>
<td>Rutiderma sp. #1* (424)</td>
<td>40414</td>
</tr>
</tbody>
</table>

324
<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthropoda (cont.)</td>
<td></td>
</tr>
<tr>
<td>Cirripedia</td>
<td></td>
</tr>
<tr>
<td>Balanus hesperius (201)</td>
<td>23720</td>
</tr>
<tr>
<td>Pycnogonida</td>
<td></td>
</tr>
<tr>
<td>Pycnogonida sp. #1 (381)</td>
<td>40415</td>
</tr>
<tr>
<td>Nebaliacea</td>
<td></td>
</tr>
<tr>
<td>Nebalia bipes (76)</td>
<td>40090</td>
</tr>
<tr>
<td>Mysidacea</td>
<td></td>
</tr>
<tr>
<td>Archeomysis grebnitzkii (100)</td>
<td>23855</td>
</tr>
<tr>
<td>Acanthomysis macropsis (113)</td>
<td>23856</td>
</tr>
<tr>
<td>Acanthomysis davisi (114)</td>
<td>23879</td>
</tr>
<tr>
<td>Acanthomysis nephrothalma (115)</td>
<td>23880</td>
</tr>
<tr>
<td>Acanthomysis alaskensis (527)</td>
<td>40416</td>
</tr>
<tr>
<td>Acanthomysis spp. (119)</td>
<td>23874</td>
</tr>
<tr>
<td>Neomysis kadiakensis (112)</td>
<td>23865</td>
</tr>
<tr>
<td>Neomysis franciscorum (111)</td>
<td>23885</td>
</tr>
<tr>
<td>Neomysis sp. #1 (116)</td>
<td>23877</td>
</tr>
<tr>
<td>Neomysis (118)</td>
<td>23875</td>
</tr>
<tr>
<td>Mysini spp. (117)</td>
<td>23881</td>
</tr>
<tr>
<td>Mysidacea spp. (120)</td>
<td>23840</td>
</tr>
<tr>
<td>Cumacea</td>
<td></td>
</tr>
<tr>
<td>Diastylidae</td>
<td></td>
</tr>
<tr>
<td>Diastylopsis dawsoni (97)</td>
<td>23899</td>
</tr>
<tr>
<td>Diastylopsis tenuis (98)</td>
<td>23900</td>
</tr>
<tr>
<td>Diastylys umatillensis (99)</td>
<td>23901</td>
</tr>
<tr>
<td>Diastylys bidentata (100)</td>
<td>23902</td>
</tr>
<tr>
<td>Diastylys alaskensis (101)</td>
<td>23903</td>
</tr>
<tr>
<td>Diastylys pellucida (586)</td>
<td>40417</td>
</tr>
<tr>
<td>Diastylys parapinulosa (584)</td>
<td>40418</td>
</tr>
<tr>
<td>Diastylys sp. #1 (102)</td>
<td>23904</td>
</tr>
<tr>
<td>Colurostylis occidentalis (104)</td>
<td>23906</td>
</tr>
<tr>
<td>Lampropidae</td>
<td></td>
</tr>
<tr>
<td>Mesolamprops sp. #1 (95)</td>
<td>23897</td>
</tr>
<tr>
<td>Hemilamprops californiensis (96)</td>
<td>23898</td>
</tr>
<tr>
<td>Lamprops sp. #1 (94)</td>
<td>23916</td>
</tr>
<tr>
<td>Lamprops sp. #2 (105)</td>
<td>40420</td>
</tr>
<tr>
<td>Campylaspis rubromaculata (400)</td>
<td>23907</td>
</tr>
<tr>
<td>Campylaspis sp. #1 (106)</td>
<td>23908</td>
</tr>
<tr>
<td>Campylaspis sp. #2 (107)</td>
<td>23909</td>
</tr>
<tr>
<td>Campylaspis sp. #3 (108)</td>
<td>23910</td>
</tr>
<tr>
<td>Campylaspis sp. #4 (582)</td>
<td>40422</td>
</tr>
<tr>
<td>Leuconidae</td>
<td></td>
</tr>
<tr>
<td>Leucon sp. #1 (528)</td>
<td>40424</td>
</tr>
<tr>
<td>Eudorellopsis longirostris (103)</td>
<td>23905</td>
</tr>
<tr>
<td>Eudorella pacifica (109)</td>
<td>23914</td>
</tr>
<tr>
<td>Cumacea spp. (223)</td>
<td>23889</td>
</tr>
<tr>
<td>Group/Species (MCR Code No.)</td>
<td>DMRP Code No.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Cumacea (cont.)</td>
<td></td>
</tr>
<tr>
<td>Tanaidacea</td>
<td></td>
</tr>
<tr>
<td>Leptognatha cf. longiremis</td>
<td>40042</td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
</tr>
<tr>
<td>Sphaeromatidae</td>
<td></td>
</tr>
<tr>
<td>Gnorisphaeroma oregonensis</td>
<td>23921</td>
</tr>
<tr>
<td>Tecticeps convexus</td>
<td>23933</td>
</tr>
<tr>
<td>Bathycyopea daltonae</td>
<td>40427</td>
</tr>
<tr>
<td>Idoteidae</td>
<td></td>
</tr>
<tr>
<td>Synidotea angulata</td>
<td>23925</td>
</tr>
<tr>
<td>Synidotea bicuspida</td>
<td>40429</td>
</tr>
<tr>
<td>Synidotea sp. #2</td>
<td>40430</td>
</tr>
<tr>
<td>Synidotea sp. #3</td>
<td>40431</td>
</tr>
<tr>
<td>Edotea sublittoralis</td>
<td>40432</td>
</tr>
<tr>
<td>Idotea fewksei</td>
<td>40433</td>
</tr>
<tr>
<td>Pentidotea oculata</td>
<td>40434</td>
</tr>
<tr>
<td>Saduria etomon</td>
<td>40435</td>
</tr>
<tr>
<td>Munnidae</td>
<td></td>
</tr>
<tr>
<td>Pleurogonium rubicundum?</td>
<td>40437</td>
</tr>
<tr>
<td>Limnoridae</td>
<td></td>
</tr>
<tr>
<td>Limnoria lognorum?</td>
<td>23924</td>
</tr>
<tr>
<td>Bopyridae</td>
<td></td>
</tr>
<tr>
<td>Argeia pugettensis</td>
<td>23929</td>
</tr>
<tr>
<td>Argeia spp. (505)</td>
<td>40440</td>
</tr>
<tr>
<td>Bopyrella? sp. #1</td>
<td>23960</td>
</tr>
<tr>
<td>Hemiarthrus abdominalis</td>
<td>40441</td>
</tr>
<tr>
<td>Anthuridae</td>
<td></td>
</tr>
<tr>
<td>Pananthura? sp. #1</td>
<td>40443</td>
</tr>
<tr>
<td>Paraselloidea sp. #1</td>
<td>40444</td>
</tr>
<tr>
<td>Cymothoida</td>
<td></td>
</tr>
<tr>
<td>Cymothoidae sp. #1</td>
<td>40446</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
</tr>
<tr>
<td>Ampeliscidae</td>
<td></td>
</tr>
<tr>
<td>Ampelisca agassizi</td>
<td>24004</td>
</tr>
<tr>
<td>Ampelisca hancocki</td>
<td>24005</td>
</tr>
<tr>
<td>Ampelisca macrocephala</td>
<td>24006</td>
</tr>
<tr>
<td>Ampelisca brevisimulata</td>
<td>40447</td>
</tr>
<tr>
<td>Byblis veleronis</td>
<td>40044</td>
</tr>
<tr>
<td>Byblis sp. #1</td>
<td>40048</td>
</tr>
<tr>
<td>Aoridae (=Corophiidae)</td>
<td></td>
</tr>
<tr>
<td>Aoridae columbiae?</td>
<td>24029</td>
</tr>
<tr>
<td>Aoridae sp. #1</td>
<td>40449</td>
</tr>
<tr>
<td>Corophiidae</td>
<td></td>
</tr>
<tr>
<td>Corophium brevis</td>
<td>24047</td>
</tr>
<tr>
<td>Corophium salmonis</td>
<td>24051</td>
</tr>
<tr>
<td>Corophium spinicornae</td>
<td>24053</td>
</tr>
<tr>
<td>Corophium sp. #1</td>
<td>24056</td>
</tr>
<tr>
<td>Corophium sp. #2</td>
<td>40450</td>
</tr>
</tbody>
</table>

326
<table>
<thead>
<tr>
<th>Group/Species (MCR Code No.)</th>
<th>DMRP Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea-Amphipoda (cont.)</td>
<td></td>
</tr>
<tr>
<td>Gammaridae</td>
<td></td>
</tr>
<tr>
<td>Anisogammarus conferviculus (488)</td>
<td>24067</td>
</tr>
<tr>
<td>Anisogammarus pugettensis (489)</td>
<td>24069</td>
</tr>
<tr>
<td>Melita desdichada? (179)</td>
<td>24084</td>
</tr>
<tr>
<td>Melita oregonensis (180)</td>
<td>24086</td>
</tr>
<tr>
<td>Hauistoriidae</td>
<td></td>
</tr>
<tr>
<td>Eohaustorius sencillus (155)</td>
<td>24096</td>
</tr>
<tr>
<td>Eohaustorius washingtonianus (156)</td>
<td>24097</td>
</tr>
<tr>
<td>Eohaustorius brevicuspis (494)</td>
<td>40451</td>
</tr>
<tr>
<td>Ischyroceridae</td>
<td></td>
</tr>
<tr>
<td>Ischyrocerus pelagops (162)</td>
<td>24108</td>
</tr>
<tr>
<td>Jassa? sp. #1 (493)</td>
<td>40452</td>
</tr>
<tr>
<td>Liljeborgiidae</td>
<td></td>
</tr>
<tr>
<td>Listriella spp. (183)</td>
<td>24119</td>
</tr>
<tr>
<td>Lysianassidae</td>
<td></td>
</tr>
<tr>
<td>Hippomedon denticulatus (169)</td>
<td>24123</td>
</tr>
<tr>
<td>Hippomedon wecomus (170)</td>
<td>24124</td>
</tr>
<tr>
<td>Hippomedon sp. #1 (178)</td>
<td>40453</td>
</tr>
<tr>
<td>Opisa tridentata (173)</td>
<td>24126</td>
</tr>
<tr>
<td>Orchomene pacifica (172)</td>
<td>40454</td>
</tr>
<tr>
<td>Orchomene sp. #2 (486)</td>
<td>40455</td>
</tr>
<tr>
<td>Pachynus barnardi? (174)</td>
<td>24129</td>
</tr>
<tr>
<td>Pachynus chelatum? (171)</td>
<td>40456</td>
</tr>
<tr>
<td>Nicippe tumida (175)</td>
<td>40457</td>
</tr>
<tr>
<td>Anonyx adoxus (176)</td>
<td>40045</td>
</tr>
<tr>
<td>Lysianassidae sp. #1 (177)</td>
<td>40458</td>
</tr>
<tr>
<td>Lysianassidae sp. #2 (585)</td>
<td>40459</td>
</tr>
<tr>
<td>Lysianassidae spp. (371)</td>
<td>24122</td>
</tr>
<tr>
<td>Oedicerotidae</td>
<td></td>
</tr>
<tr>
<td>Bathymedon? sp. #1 (131)</td>
<td>24134</td>
</tr>
<tr>
<td>Bathymedon? sp. #2 (411)</td>
<td>40460</td>
</tr>
<tr>
<td>Monoculodes spinipes (127)</td>
<td>24136</td>
</tr>
<tr>
<td>Monoculodes sp. #1 (128)</td>
<td>24137</td>
</tr>
<tr>
<td>Monoculodes sp. #2 (129)</td>
<td>24138</td>
</tr>
<tr>
<td>Monoculodes zernovi (130)</td>
<td>24141</td>
</tr>
<tr>
<td>Synchelidium shoemakeri (132)</td>
<td>24139</td>
</tr>
<tr>
<td>Synchelidium rectipalmum (133)</td>
<td>24142</td>
</tr>
<tr>
<td>Westwoodilla caecula (134)</td>
<td>24140</td>
</tr>
<tr>
<td>Phoxocephalidae</td>
<td></td>
</tr>
<tr>
<td>Paraphoxus abronius? (135)</td>
<td>24146</td>
</tr>
<tr>
<td>Paraphoxus epistomus? (137)</td>
<td>24148</td>
</tr>
<tr>
<td>Paraphoxus heterocuspидatus (138)</td>
<td>24149</td>
</tr>
<tr>
<td>Paraphoxus lucubrans? (146)</td>
<td>24150</td>
</tr>
<tr>
<td>Paraphoxus millcrid (145)</td>
<td>24151</td>
</tr>
<tr>
<td>Paraphoxus obtusidens obtusidens? (139)</td>
<td>24152</td>
</tr>
<tr>
<td>Paraphoxus obtusidens major (140)</td>
<td>24153</td>
</tr>
<tr>
<td>Group/Species (MCR Code No.)</td>
<td>DMRP Code No.</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Crustacea (cont.)</td>
<td></td>
</tr>
<tr>
<td>Isaeidae (Corophiidae) sp. #1 (527)</td>
<td>40470</td>
</tr>
<tr>
<td>Pardaliscidae</td>
<td></td>
</tr>
<tr>
<td>Pardaliscella sp. #1 (186)</td>
<td>40472</td>
</tr>
<tr>
<td>Eusiridae</td>
<td></td>
</tr>
<tr>
<td>Rhachotropis oculata (402)</td>
<td>40474</td>
</tr>
<tr>
<td>Accedomoera sp. #1 (187)</td>
<td>40475</td>
</tr>
<tr>
<td>Gammaridea sp. #2 (366)</td>
<td>40476</td>
</tr>
<tr>
<td>Caprelloidea</td>
<td></td>
</tr>
<tr>
<td>Mayerella banskia? (190)</td>
<td>40479</td>
</tr>
<tr>
<td>Tritella pilimana (191)</td>
<td>24342</td>
</tr>
<tr>
<td>Caprellidae</td>
<td></td>
</tr>
<tr>
<td>Caprella sp. #1 (532)</td>
<td>40481</td>
</tr>
<tr>
<td>Caprella mendax (581)</td>
<td>40482</td>
</tr>
<tr>
<td>Hyperiidea</td>
<td></td>
</tr>
<tr>
<td>Hyperiidea sp. #1 (529)</td>
<td>24206</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td></td>
</tr>
<tr>
<td>Euphausiidae</td>
<td></td>
</tr>
<tr>
<td>Euphausia pacifica (569)</td>
<td>24360</td>
</tr>
<tr>
<td>Thysanoessa spinifera (568)</td>
<td>24374</td>
</tr>
<tr>
<td>Decapoda</td>
<td></td>
</tr>
<tr>
<td>Pandalida</td>
<td></td>
</tr>
<tr>
<td>Pandalus danae (557)</td>
<td>24417</td>
</tr>
<tr>
<td>Pandalus jordani (558)</td>
<td>24420</td>
</tr>
<tr>
<td>Hippolytidae</td>
<td></td>
</tr>
<tr>
<td>Spirontocaris gracilis (206)</td>
<td>24432</td>
</tr>
<tr>
<td>Spirontocaris avina (561)</td>
<td>24433</td>
</tr>
<tr>
<td>Spirontocaris barbata (562)</td>
<td>40046</td>
</tr>
<tr>
<td>Spirontocaris bispinosa (563)</td>
<td>24434</td>
</tr>
<tr>
<td>Spirontocaris cristata (564)</td>
<td>24430</td>
</tr>
<tr>
<td>Spirontocaris lamellicornis (565)</td>
<td>40047</td>
</tr>
<tr>
<td>Spirontocaris pusiola? (566)</td>
<td>40048</td>
</tr>
<tr>
<td>Spirontocaris suckleyi (567)</td>
<td>40050</td>
</tr>
<tr>
<td>Spirontocaris spp. (583)</td>
<td>40049</td>
</tr>
<tr>
<td>Crangonidae</td>
<td></td>
</tr>
<tr>
<td>Crangon alaskensis elongata (203)</td>
<td>24436</td>
</tr>
<tr>
<td>Crangon franciscorum (520)</td>
<td>24439</td>
</tr>
<tr>
<td>Crangon stylirostris (204)</td>
<td>24448</td>
</tr>
<tr>
<td>Crangon spp. (205)</td>
<td>24446</td>
</tr>
<tr>
<td>Crangon communis (550)</td>
<td>24450</td>
</tr>
<tr>
<td>Crangon munita (552)</td>
<td>24440</td>
</tr>
<tr>
<td>Crangon sp. #1 (553)</td>
<td>24452</td>
</tr>
<tr>
<td>Nectocrangon alakensis (544)</td>
<td>24451</td>
</tr>
<tr>
<td>Sergestidae</td>
<td></td>
</tr>
<tr>
<td>Sergestes similis (560)</td>
<td>24462</td>
</tr>
<tr>
<td>Callianassidae</td>
<td></td>
</tr>
<tr>
<td>Callianassa californiensis (547)</td>
<td>24614</td>
</tr>
<tr>
<td>Group/Species (MCR Code No.)</td>
<td>DMRP Code No.</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Decapoda (cont.)</td>
<td></td>
</tr>
<tr>
<td>Galatheidae</td>
<td></td>
</tr>
<tr>
<td>Munida quadrispina (218)</td>
<td>24646</td>
</tr>
<tr>
<td>Paguridae</td>
<td></td>
</tr>
<tr>
<td>Pagurus armatus (212)</td>
<td>24657</td>
</tr>
<tr>
<td>Pagurus ochotensis (210)</td>
<td>24671</td>
</tr>
<tr>
<td>Pagurus quayleyi (211)</td>
<td>24672</td>
</tr>
<tr>
<td>Pagurus aleuticus (556)</td>
<td>40483</td>
</tr>
<tr>
<td>Paguristes turgidus (555)</td>
<td>24654</td>
</tr>
<tr>
<td>Pagurus caurinus (513)</td>
<td>40484</td>
</tr>
<tr>
<td>Pagurus spp. (213)</td>
<td>24670</td>
</tr>
<tr>
<td>Paguridae spp. (214)</td>
<td>24650</td>
</tr>
<tr>
<td>Majidae</td>
<td></td>
</tr>
<tr>
<td>Chorilia longipes (549)</td>
<td>24909</td>
</tr>
<tr>
<td>Cancriidae</td>
<td></td>
</tr>
<tr>
<td>Cancer gracilis? (216)</td>
<td>24929</td>
</tr>
<tr>
<td>Cancer magister (217)</td>
<td>24930</td>
</tr>
<tr>
<td>Cancer oregonensis (548)</td>
<td>24931</td>
</tr>
<tr>
<td>Pinnotheridae</td>
<td></td>
</tr>
<tr>
<td>Pinnixa occidentalis (559)</td>
<td>24967</td>
</tr>
<tr>
<td>Pinnixa sp. #1 (207)</td>
<td>24961</td>
</tr>
<tr>
<td>Pinnixa sp. #2 (208)</td>
<td>24962</td>
</tr>
<tr>
<td>Pinnixa sp. #3 (209)</td>
<td>24963</td>
</tr>
<tr>
<td>Pinnixa littoralis (542)</td>
<td>24966</td>
</tr>
<tr>
<td>Pinnixa spp. (215)</td>
<td>24970</td>
</tr>
<tr>
<td>Sipunculida</td>
<td></td>
</tr>
<tr>
<td>Golfingia macginitieii (69)</td>
<td>25352</td>
</tr>
<tr>
<td>Golfingia sp. #1 (70)</td>
<td>25353</td>
</tr>
<tr>
<td>Sipunculida spp. (71)</td>
<td></td>
</tr>
<tr>
<td>Echiurida</td>
<td></td>
</tr>
<tr>
<td>Echiurus echiurus alaskansus (73)</td>
<td>25402</td>
</tr>
<tr>
<td>Archynchite pugettensis (74)</td>
<td>25403</td>
</tr>
<tr>
<td>Echiura sp. #3 (421)</td>
<td>40485</td>
</tr>
<tr>
<td>Echiura sp. #4 (427)</td>
<td>40486</td>
</tr>
<tr>
<td>Echiura sp. #5 (533)</td>
<td>40487</td>
</tr>
<tr>
<td>Echiurida spp. (423)</td>
<td>25400</td>
</tr>
<tr>
<td>Priapulida</td>
<td></td>
</tr>
<tr>
<td>Priapulus caudata (72)</td>
<td>25454</td>
</tr>
<tr>
<td>Prorona</td>
<td></td>
</tr>
<tr>
<td>Phoronis psammophila? (419)</td>
<td>40488</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous #1 (362)</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous #2 (363)</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous #3 (364)</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous #4 (375)</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous #5 (376)</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous #6 (580)</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C-III

Community Structure

Table C-IIIA. Species Richness (SR), Simpson Diversity (SD), Shannon Diversity [H(2), H(E), H(10)], and Evenness [JPR(2), J(2)] Values for Each Macrofauna Station (pages 383-399).

Table C-IIIB. Density, Number of Species and Biomass for Each Macrofauna Station (pages 400-411).
Table C-III A

Species Richness (SR), Simpson Diversity (SD), Shannon Diversity [HPR(2), HPR(E), HPR(10)], Brillouin Diversity [H(2), H(E), H(10)], and evenness (JPR(2), J(2)) values for each macrofauna station.

<table>
<thead>
<tr>
<th>Station</th>
<th>SR</th>
<th>SD</th>
<th>HPR(2)</th>
<th>HPR(E)</th>
<th>HPR(10)</th>
<th>H(2)</th>
<th>H(E)</th>
<th>H(10)</th>
<th>JPR(2)</th>
<th>J(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>13.643</td>
<td>0.950</td>
<td>5.134</td>
<td>3.558</td>
<td>1.545</td>
<td>4.946</td>
<td>3.429</td>
<td>1.489</td>
<td>0.776</td>
<td>0.748</td>
</tr>
<tr>
<td>48</td>
<td>12.008</td>
<td>0.920</td>
<td>4.727</td>
<td>3.276</td>
<td>1.423</td>
<td>4.524</td>
<td>3.136</td>
<td>1.362</td>
<td>0.741</td>
<td>0.710</td>
</tr>
<tr>
<td>49</td>
<td>8.056</td>
<td>0.910</td>
<td>4.277</td>
<td>2.964</td>
<td>1.287</td>
<td>4.030</td>
<td>2.794</td>
<td>1.213</td>
<td>0.758</td>
<td>0.714</td>
</tr>
<tr>
<td>50</td>
<td>8.336</td>
<td>0.935</td>
<td>4.628</td>
<td>3.208</td>
<td>1.393</td>
<td>4.184</td>
<td>2.900</td>
<td>1.259</td>
<td>0.843</td>
<td>0.762</td>
</tr>
<tr>
<td>51</td>
<td>6.348</td>
<td>0.913</td>
<td>4.155</td>
<td>2.880</td>
<td>1.251</td>
<td>3.849</td>
<td>2.668</td>
<td>1.159</td>
<td>0.804</td>
<td>0.745</td>
</tr>
<tr>
<td>52</td>
<td>8.561</td>
<td>0.943</td>
<td>4.602</td>
<td>3.245</td>
<td>1.409</td>
<td>4.344</td>
<td>3.011</td>
<td>1.300</td>
<td>0.830</td>
<td>0.770</td>
</tr>
<tr>
<td>53</td>
<td>7.572</td>
<td>0.536</td>
<td>2.339</td>
<td>1.621</td>
<td>0.704</td>
<td>2.252</td>
<td>1.561</td>
<td>0.678</td>
<td>0.403</td>
<td>0.338</td>
</tr>
<tr>
<td>54</td>
<td>15.832</td>
<td>0.887</td>
<td>4.544</td>
<td>3.150</td>
<td>1.368</td>
<td>4.425</td>
<td>3.067</td>
<td>1.332</td>
<td>0.652</td>
<td>0.635</td>
</tr>
<tr>
<td>55</td>
<td>14.807</td>
<td>0.924</td>
<td>4.632</td>
<td>3.210</td>
<td>1.394</td>
<td>4.519</td>
<td>3.133</td>
<td>1.360</td>
<td>0.674</td>
<td>0.658</td>
</tr>
<tr>
<td>56</td>
<td>10.025</td>
<td>0.811</td>
<td>3.565</td>
<td>2.471</td>
<td>1.073</td>
<td>3.483</td>
<td>2.414</td>
<td>1.049</td>
<td>0.566</td>
<td>0.553</td>
</tr>
<tr>
<td>57</td>
<td>7.451</td>
<td>0.935</td>
<td>4.505</td>
<td>3.123</td>
<td>1.356</td>
<td>4.234</td>
<td>2.935</td>
<td>1.275</td>
<td>0.820</td>
<td>0.771</td>
</tr>
<tr>
<td>58</td>
<td>5.963</td>
<td>0.907</td>
<td>4.037</td>
<td>2.798</td>
<td>1.215</td>
<td>3.685</td>
<td>2.555</td>
<td>1.109</td>
<td>0.807</td>
<td>0.737</td>
</tr>
<tr>
<td>59</td>
<td>3.794</td>
<td>0.862</td>
<td>3.363</td>
<td>2.331</td>
<td>1.012</td>
<td>3.039</td>
<td>2.107</td>
<td>0.915</td>
<td>0.792</td>
<td>0.715</td>
</tr>
<tr>
<td>60</td>
<td>5.887</td>
<td>0.879</td>
<td>3.768</td>
<td>2.612</td>
<td>1.134</td>
<td>3.510</td>
<td>2.433</td>
<td>1.057</td>
<td>0.741</td>
<td>0.690</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>61</td>
<td>4.554</td>
<td>0.888</td>
<td>3.721</td>
<td>2.579</td>
<td>1.120</td>
<td>3.514</td>
<td>2.436</td>
<td>1.058</td>
<td>0.783</td>
<td>0.739</td>
</tr>
<tr>
<td>62</td>
<td>3.779</td>
<td>0.643</td>
<td>2.576</td>
<td>1.786</td>
<td>0.775</td>
<td>2.393</td>
<td>1.659</td>
<td>0.720</td>
<td>0.578</td>
<td>0.537</td>
</tr>
<tr>
<td>63</td>
<td>4.118</td>
<td>0.798</td>
<td>2.945</td>
<td>2.041</td>
<td>0.886</td>
<td>2.694</td>
<td>1.867</td>
<td>0.811</td>
<td>0.660</td>
<td>0.604</td>
</tr>
<tr>
<td>64</td>
<td>6.436</td>
<td>0.886</td>
<td>3.917</td>
<td>2.715</td>
<td>1.179</td>
<td>3.606</td>
<td>2.499</td>
<td>1.085</td>
<td>0.758</td>
<td>0.697</td>
</tr>
<tr>
<td>65</td>
<td>8.616</td>
<td>0.807</td>
<td>3.326</td>
<td>2.305</td>
<td>1.001</td>
<td>3.288</td>
<td>2.279</td>
<td>0.990</td>
<td>0.534</td>
<td>0.528</td>
</tr>
<tr>
<td>66</td>
<td>10.114</td>
<td>0.845</td>
<td>3.637</td>
<td>2.521</td>
<td>1.095</td>
<td>3.571</td>
<td>2.475</td>
<td>1.075</td>
<td>0.572</td>
<td>0.562</td>
</tr>
<tr>
<td>67</td>
<td>13.041</td>
<td>0.910</td>
<td>4.506</td>
<td>3.123</td>
<td>1.356</td>
<td>4.407</td>
<td>3.055</td>
<td>1.327</td>
<td>0.673</td>
<td>0.658</td>
</tr>
<tr>
<td>68</td>
<td>14.652</td>
<td>0.928</td>
<td>4.717</td>
<td>3.270</td>
<td>1.420</td>
<td>4.576</td>
<td>3.172</td>
<td>1.378</td>
<td>0.694</td>
<td>0.673</td>
</tr>
<tr>
<td>69</td>
<td>10.548</td>
<td>0.848</td>
<td>3.683</td>
<td>2.553</td>
<td>1.109</td>
<td>3.608</td>
<td>2.501</td>
<td>1.086</td>
<td>0.576</td>
<td>0.564</td>
</tr>
<tr>
<td>70</td>
<td>8.717</td>
<td>0.795</td>
<td>3.344</td>
<td>2.318</td>
<td>1.007</td>
<td>3.272</td>
<td>2.268</td>
<td>0.985</td>
<td>0.547</td>
<td>0.536</td>
</tr>
<tr>
<td>71</td>
<td>5.246</td>
<td>0.767</td>
<td>3.277</td>
<td>2.272</td>
<td>0.987</td>
<td>2.837</td>
<td>1.966</td>
<td>0.854</td>
<td>0.706</td>
<td>0.611</td>
</tr>
<tr>
<td>72</td>
<td>6.466</td>
<td>0.857</td>
<td>3.885</td>
<td>2.693</td>
<td>1.169</td>
<td>3.452</td>
<td>2.393</td>
<td>1.039</td>
<td>0.770</td>
<td>0.684</td>
</tr>
<tr>
<td>73</td>
<td>6.411</td>
<td>0.887</td>
<td>4.110</td>
<td>2.849</td>
<td>1.237</td>
<td>3.786</td>
<td>2.624</td>
<td>1.140</td>
<td>0.795</td>
<td>0.723</td>
</tr>
<tr>
<td>74</td>
<td>5.162</td>
<td>0.827</td>
<td>3.442</td>
<td>2.386</td>
<td>1.036</td>
<td>3.109</td>
<td>2.155</td>
<td>0.936</td>
<td>0.724</td>
<td>0.654</td>
</tr>
<tr>
<td>75</td>
<td>5.924</td>
<td>0.888</td>
<td>3.846</td>
<td>2.666</td>
<td>1.158</td>
<td>3.693</td>
<td>2.560</td>
<td>1.112</td>
<td>0.728</td>
<td>0.699</td>
</tr>
<tr>
<td>76</td>
<td>5.599</td>
<td>0.852</td>
<td>3.410</td>
<td>2.363</td>
<td>1.026</td>
<td>3.219</td>
<td>2.231</td>
<td>0.969</td>
<td>0.670</td>
<td>0.633</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>77</td>
<td>3.191</td>
<td>0.678</td>
<td>2.453</td>
<td>1.700</td>
<td>0.738</td>
<td>2.196</td>
<td>1.522</td>
<td>0.661</td>
<td>0.613</td>
<td>0.549</td>
</tr>
<tr>
<td>78</td>
<td>4.768</td>
<td>0.739</td>
<td>2.947</td>
<td>2.042</td>
<td>0.887</td>
<td>2.751</td>
<td>1.907</td>
<td>0.828</td>
<td>0.613</td>
<td>0.572</td>
</tr>
<tr>
<td>79</td>
<td>2.118</td>
<td>0.547</td>
<td>1.793</td>
<td>1.243</td>
<td>0.540</td>
<td>1.667</td>
<td>1.156</td>
<td>0.052</td>
<td>0.500</td>
<td>0.465</td>
</tr>
<tr>
<td>80</td>
<td>4.923</td>
<td>0.762</td>
<td>2.991</td>
<td>2.073</td>
<td>0.900</td>
<td>2.659</td>
<td>1.843</td>
<td>0.800</td>
<td>0.644</td>
<td>0.573</td>
</tr>
<tr>
<td>81</td>
<td>3.877</td>
<td>0.633</td>
<td>2.392</td>
<td>1.658</td>
<td>0.720</td>
<td>2.172</td>
<td>1.506</td>
<td>0.654</td>
<td>0.545</td>
<td>0.495</td>
</tr>
<tr>
<td>82</td>
<td>4.186</td>
<td>0.710</td>
<td>2.702</td>
<td>1.873</td>
<td>0.813</td>
<td>2.442</td>
<td>1.693</td>
<td>0.735</td>
<td>0.606</td>
<td>0.548</td>
</tr>
<tr>
<td>83</td>
<td>3.687</td>
<td>0.772</td>
<td>2.835</td>
<td>1.965</td>
<td>0.853</td>
<td>2.610</td>
<td>1.809</td>
<td>0.796</td>
<td>0.656</td>
<td>0.604</td>
</tr>
<tr>
<td>84</td>
<td>3.589</td>
<td>0.773</td>
<td>2.729</td>
<td>1.891</td>
<td>0.821</td>
<td>2.533</td>
<td>1.756</td>
<td>0.762</td>
<td>0.631</td>
<td>0.586</td>
</tr>
<tr>
<td>85</td>
<td>4.611</td>
<td>0.741</td>
<td>2.862</td>
<td>1.984</td>
<td>0.861</td>
<td>2.667</td>
<td>1.848</td>
<td>0.803</td>
<td>0.602</td>
<td>0.561</td>
</tr>
<tr>
<td>86</td>
<td>3.955</td>
<td>0.648</td>
<td>2.428</td>
<td>1.683</td>
<td>0.731</td>
<td>2.153</td>
<td>1.492</td>
<td>0.648</td>
<td>0.562</td>
<td>0.498</td>
</tr>
<tr>
<td>87</td>
<td>5.251</td>
<td>0.861</td>
<td>3.617</td>
<td>2.507</td>
<td>1.089</td>
<td>3.393</td>
<td>2.352</td>
<td>1.021</td>
<td>0.730</td>
<td>0.685</td>
</tr>
<tr>
<td>88</td>
<td>6.117</td>
<td>0.683</td>
<td>2.886</td>
<td>2.001</td>
<td>0.869</td>
<td>2.793</td>
<td>1.936</td>
<td>0.841</td>
<td>0.529</td>
<td>0.512</td>
</tr>
<tr>
<td>89</td>
<td>6.003</td>
<td>0.764</td>
<td>3.050</td>
<td>2.114</td>
<td>0.918</td>
<td>2.968</td>
<td>2.057</td>
<td>0.893</td>
<td>0.559</td>
<td>0.544</td>
</tr>
<tr>
<td>90</td>
<td>6.669</td>
<td>0.855</td>
<td>3.657</td>
<td>2.535</td>
<td>1.101</td>
<td>3.554</td>
<td>2.463</td>
<td>1.070</td>
<td>0.655</td>
<td>0.636</td>
</tr>
<tr>
<td>91</td>
<td>4.328</td>
<td>0.110</td>
<td>0.518</td>
<td>0.359</td>
<td>0.156</td>
<td>0.507</td>
<td>0.351</td>
<td>0.153</td>
<td>0.097</td>
<td>0.095</td>
</tr>
<tr>
<td>92</td>
<td>4.023</td>
<td>0.526</td>
<td>1.872</td>
<td>1.298</td>
<td>0.564</td>
<td>1.752</td>
<td>1.215</td>
<td>0.527</td>
<td>0.403</td>
<td>0.377</td>
</tr>
</tbody>
</table>
Table C-III (Continued)

<table>
<thead>
<tr>
<th>Station</th>
<th>SR</th>
<th>SD</th>
<th>HPR(2)</th>
<th>HPR(E)</th>
<th>HPR(10)</th>
<th>H(2)</th>
<th>H(E)</th>
<th>H(10)</th>
<th>JPR(2)</th>
<th>J(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>5.111</td>
<td>0.862</td>
<td>3.634</td>
<td>2.519</td>
<td>1.094</td>
<td>3.339</td>
<td>2.315</td>
<td>1.005</td>
<td>0.756</td>
<td>0.695</td>
</tr>
<tr>
<td>94</td>
<td>4.915</td>
<td>0.865</td>
<td>3.619</td>
<td>2.508</td>
<td>1.089</td>
<td>3.254</td>
<td>2.256</td>
<td>0.980</td>
<td>0.779</td>
<td>0.701</td>
</tr>
<tr>
<td>95</td>
<td>8.269</td>
<td>0.839</td>
<td>3.704</td>
<td>2.567</td>
<td>1.115</td>
<td>3.634</td>
<td>2.519</td>
<td>1.094</td>
<td>0.613</td>
<td>0.601</td>
</tr>
<tr>
<td>96</td>
<td>9.172</td>
<td>0.857</td>
<td>3.724</td>
<td>2.581</td>
<td>1.121</td>
<td>3.654</td>
<td>2.533</td>
<td>1.100</td>
<td>0.602</td>
<td>0.590</td>
</tr>
<tr>
<td>97</td>
<td>13.493</td>
<td>0.945</td>
<td>5.065</td>
<td>3.511</td>
<td>1.525</td>
<td>4.889</td>
<td>3.389</td>
<td>1.472</td>
<td>0.766</td>
<td>0.739</td>
</tr>
<tr>
<td>98</td>
<td>13.924</td>
<td>0.937</td>
<td>4.966</td>
<td>3.442</td>
<td>1.495</td>
<td>4.825</td>
<td>3.345</td>
<td>1.453</td>
<td>0.738</td>
<td>0.717</td>
</tr>
<tr>
<td>99</td>
<td>11.127</td>
<td>0.870</td>
<td>3.918</td>
<td>2.716</td>
<td>1.179</td>
<td>3.834</td>
<td>2.657</td>
<td>1.154</td>
<td>0.607</td>
<td>0.594</td>
</tr>
<tr>
<td>100</td>
<td>8.114</td>
<td>0.828</td>
<td>3.660</td>
<td>2.537</td>
<td>1.102</td>
<td>3.586</td>
<td>2.48</td>
<td>1.079</td>
<td>0.610</td>
<td>0.598</td>
</tr>
<tr>
<td>101</td>
<td>4.979</td>
<td>0.235</td>
<td>1.069</td>
<td>0.741</td>
<td>0.322</td>
<td>1.027</td>
<td>0.712</td>
<td>0.309</td>
<td>0.202</td>
<td>0.194</td>
</tr>
<tr>
<td>102</td>
<td>3.927</td>
<td>0.840</td>
<td>3.189</td>
<td>2.211</td>
<td>0.960</td>
<td>3.007</td>
<td>2.084</td>
<td>0.905</td>
<td>0.705</td>
<td>0.655</td>
</tr>
<tr>
<td>103</td>
<td>3.592</td>
<td>0.129</td>
<td>0.588</td>
<td>0.407</td>
<td>0.177</td>
<td>0.565</td>
<td>0.391</td>
<td>0.170</td>
<td>0.121</td>
<td>0.116</td>
</tr>
<tr>
<td>104</td>
<td>7.102</td>
<td>0.906</td>
<td>4.208</td>
<td>2.917</td>
<td>1.267</td>
<td>2.807</td>
<td>2.639</td>
<td>1.146</td>
<td>0.802</td>
<td>0.725</td>
</tr>
<tr>
<td>105</td>
<td>8.452</td>
<td>0.909</td>
<td>4.324</td>
<td>2.997</td>
<td>1.302</td>
<td>3.965</td>
<td>2.748</td>
<td>1.194</td>
<td>0.774</td>
<td>0.710</td>
</tr>
<tr>
<td>106</td>
<td>6.691</td>
<td>0.910</td>
<td>4.133</td>
<td>2.865</td>
<td>1.244</td>
<td>3.823</td>
<td>2.650</td>
<td>1.151</td>
<td>0.788</td>
<td>0.728</td>
</tr>
<tr>
<td>107</td>
<td>6.073</td>
<td>0.903</td>
<td>4.017</td>
<td>2.784</td>
<td>1.209</td>
<td>3.710</td>
<td>2.571</td>
<td>1.117</td>
<td>0.790</td>
<td>0.729</td>
</tr>
<tr>
<td>111</td>
<td>4.649</td>
<td>0.656</td>
<td>2.678</td>
<td>1.856</td>
<td>0.806</td>
<td>2.526</td>
<td>1.751</td>
<td>0.760</td>
<td>0.551</td>
<td>0.520</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>II(2)</td>
<td>II(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>112</td>
<td>3.704</td>
<td>0.454</td>
<td>1.855</td>
<td>1.286</td>
<td>0.558</td>
<td>1.708</td>
<td>1.184</td>
<td>0.514</td>
<td>0.416</td>
<td>0.383</td>
</tr>
<tr>
<td>113</td>
<td>2.857</td>
<td>0.830</td>
<td>2.938</td>
<td>2.037</td>
<td>0.885</td>
<td>2.506</td>
<td>1.737</td>
<td>0.754</td>
<td>0.820</td>
<td>0.699</td>
</tr>
<tr>
<td>114</td>
<td>4.047</td>
<td>0.886</td>
<td>3.595</td>
<td>2.492</td>
<td>1.082</td>
<td>3.285</td>
<td>2.277</td>
<td>0.989</td>
<td>0.818</td>
<td>0.748</td>
</tr>
<tr>
<td>115</td>
<td>3.660</td>
<td>0.877</td>
<td>3.452</td>
<td>2.393</td>
<td>1.039</td>
<td>3.108</td>
<td>2.154</td>
<td>0.936</td>
<td>0.828</td>
<td>0.745</td>
</tr>
<tr>
<td>116</td>
<td>4.410</td>
<td>0.691</td>
<td>2.789</td>
<td>1.933</td>
<td>0.839</td>
<td>2.461</td>
<td>1.706</td>
<td>0.741</td>
<td>0.625</td>
<td>0.522</td>
</tr>
<tr>
<td>117</td>
<td>6.620</td>
<td>0.872</td>
<td>3.989</td>
<td>2.765</td>
<td>1.201</td>
<td>3.595</td>
<td>2.492</td>
<td>1.082</td>
<td>0.778</td>
<td>0.701</td>
</tr>
<tr>
<td>118</td>
<td>5.870</td>
<td>0.885</td>
<td>3.891</td>
<td>2.697</td>
<td>1.171</td>
<td>3.597</td>
<td>2.493</td>
<td>1.083</td>
<td>0.771</td>
<td>0.713</td>
</tr>
<tr>
<td>119</td>
<td>4.250</td>
<td>0.817</td>
<td>3.173</td>
<td>2.199</td>
<td>0.955</td>
<td>2.876</td>
<td>1.993</td>
<td>0.866</td>
<td>0.711</td>
<td>0.645</td>
</tr>
<tr>
<td>120</td>
<td>8.019</td>
<td>0.918</td>
<td>4.296</td>
<td>2.978</td>
<td>1.293</td>
<td>4.017</td>
<td>2.784</td>
<td>1.209</td>
<td>0.769</td>
<td>0.719</td>
</tr>
<tr>
<td>121</td>
<td>3.272</td>
<td>0.852</td>
<td>3.232</td>
<td>2.240</td>
<td>0.973</td>
<td>2.906</td>
<td>2.014</td>
<td>0.875</td>
<td>0.808</td>
<td>0.726</td>
</tr>
<tr>
<td>122</td>
<td>6.034</td>
<td>0.832</td>
<td>3.488</td>
<td>2.418</td>
<td>1.050</td>
<td>3.240</td>
<td>2.246</td>
<td>0.975</td>
<td>0.680</td>
<td>0.632</td>
</tr>
<tr>
<td>123</td>
<td>5.471</td>
<td>0.808</td>
<td>3.334</td>
<td>2.311</td>
<td>1.004</td>
<td>3.010</td>
<td>2.087</td>
<td>0.906</td>
<td>0.686</td>
<td>0.620</td>
</tr>
<tr>
<td>124</td>
<td>3.894</td>
<td>0.744</td>
<td>2.702</td>
<td>1.873</td>
<td>0.813</td>
<td>2.471</td>
<td>1.713</td>
<td>0.744</td>
<td>0.615</td>
<td>0.563</td>
</tr>
<tr>
<td>125</td>
<td>2.771</td>
<td>0.847</td>
<td>3.026</td>
<td>2.098</td>
<td>0.911</td>
<td>2.767</td>
<td>1.918</td>
<td>0.833</td>
<td>0.795</td>
<td>0.727</td>
</tr>
<tr>
<td>126</td>
<td>8.351</td>
<td>0.916</td>
<td>4.327</td>
<td>2.999</td>
<td>1.302</td>
<td>4.149</td>
<td>2.876</td>
<td>1.249</td>
<td>0.745</td>
<td>0.714</td>
</tr>
<tr>
<td>127</td>
<td>6.490</td>
<td>0.686</td>
<td>2.977</td>
<td>2.064</td>
<td>0.896</td>
<td>2.798</td>
<td>1.939</td>
<td>0.842</td>
<td>0.556</td>
<td>0.522</td>
</tr>
<tr>
<td>Station</td>
<td>SD</td>
<td>HPR(2)</td>
<td>JPR(10)</td>
<td>S</td>
<td>HPR(2)</td>
<td>S</td>
<td>HPR(E)</td>
<td>S</td>
<td>H(10)</td>
<td>S</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>--------</td>
<td>---------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>129</td>
<td>6.793</td>
<td>2.249</td>
<td>10.750</td>
<td>130</td>
<td>3.615</td>
<td>2.249</td>
<td>10.750</td>
<td>131</td>
<td>1.199</td>
<td>0.793</td>
</tr>
<tr>
<td>130</td>
<td>3.977</td>
<td>2.204</td>
<td>7.105</td>
<td>131</td>
<td>3.615</td>
<td>2.204</td>
<td>7.105</td>
<td>132</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>131</td>
<td>3.188</td>
<td>2.204</td>
<td>7.105</td>
<td>132</td>
<td>1.088</td>
<td>0.806</td>
<td>3.615</td>
<td>133</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>132</td>
<td>2.188</td>
<td>2.204</td>
<td>7.105</td>
<td>133</td>
<td>1.088</td>
<td>0.806</td>
<td>3.615</td>
<td>134</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>133</td>
<td>2.020</td>
<td>2.204</td>
<td>7.105</td>
<td>134</td>
<td>1.088</td>
<td>0.806</td>
<td>3.615</td>
<td>135</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>134</td>
<td>2.020</td>
<td>2.204</td>
<td>7.105</td>
<td>135</td>
<td>1.088</td>
<td>0.806</td>
<td>3.615</td>
<td>136</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>135</td>
<td>1.575</td>
<td>2.204</td>
<td>7.105</td>
<td>136</td>
<td>1.088</td>
<td>0.806</td>
<td>3.615</td>
<td>137</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>136</td>
<td>1.575</td>
<td>2.204</td>
<td>7.105</td>
<td>137</td>
<td>1.088</td>
<td>0.806</td>
<td>3.615</td>
<td>138</td>
<td>1.088</td>
<td>0.806</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>147</td>
<td>12.340</td>
<td>0.802</td>
<td>3.536</td>
<td>2.451</td>
<td>1.065</td>
<td>3.488</td>
<td>2.418</td>
<td>1.050</td>
<td>0.524</td>
<td>0.516</td>
</tr>
<tr>
<td>148</td>
<td>14.421</td>
<td>0.937</td>
<td>4.913</td>
<td>3.405</td>
<td>1.479</td>
<td>4.788</td>
<td>3.319</td>
<td>1.441</td>
<td>0.722</td>
<td>0.703</td>
</tr>
<tr>
<td>149</td>
<td>15.046</td>
<td>0.947</td>
<td>5.135</td>
<td>3.560</td>
<td>1.546</td>
<td>4.951</td>
<td>3.432</td>
<td>1.491</td>
<td>0.757</td>
<td>0.730</td>
</tr>
<tr>
<td>150</td>
<td>12.391</td>
<td>0.790</td>
<td>3.454</td>
<td>2.394</td>
<td>1.040</td>
<td>3.380</td>
<td>2.343</td>
<td>1.017</td>
<td>0.519</td>
<td>0.508</td>
</tr>
<tr>
<td>151</td>
<td>7.044</td>
<td>0.926</td>
<td>4.372</td>
<td>3.030</td>
<td>1.316</td>
<td>4.184</td>
<td>2.900</td>
<td>1.259</td>
<td>0.791</td>
<td>0.757</td>
</tr>
<tr>
<td>152</td>
<td>4.548</td>
<td>0.680</td>
<td>2.745</td>
<td>1.903</td>
<td>0.826</td>
<td>2.607</td>
<td>1.807</td>
<td>0.785</td>
<td>0.565</td>
<td>0.537</td>
</tr>
<tr>
<td>153</td>
<td>4.391</td>
<td>0.892</td>
<td>3.739</td>
<td>2.592</td>
<td>1.126</td>
<td>3.417</td>
<td>2.369</td>
<td>1.029</td>
<td>0.827</td>
<td>0.755</td>
</tr>
<tr>
<td>154</td>
<td>8.903</td>
<td>0.611</td>
<td>2.817</td>
<td>1.953</td>
<td>0.848</td>
<td>2.700</td>
<td>1.871</td>
<td>0.813</td>
<td>0.470</td>
<td>0.450</td>
</tr>
<tr>
<td>155</td>
<td>9.492</td>
<td>0.951</td>
<td>4.928</td>
<td>3.416</td>
<td>1.483</td>
<td>4.593</td>
<td>3.184</td>
<td>1.383</td>
<td>0.845</td>
<td>0.787</td>
</tr>
<tr>
<td>156</td>
<td>6.882</td>
<td>0.909</td>
<td>4.186</td>
<td>2.901</td>
<td>1.260</td>
<td>3.867</td>
<td>2.680</td>
<td>1.164</td>
<td>0.792</td>
<td>0.732</td>
</tr>
<tr>
<td>157</td>
<td>4.412</td>
<td>0.888</td>
<td>3.728</td>
<td>2.584</td>
<td>1.122</td>
<td>3.517</td>
<td>2.438</td>
<td>1.059</td>
<td>0.793</td>
<td>0.748</td>
</tr>
<tr>
<td>158</td>
<td>5.040</td>
<td>0.919</td>
<td>4.062</td>
<td>2.816</td>
<td>1.223</td>
<td>3.634</td>
<td>2.519</td>
<td>1.094</td>
<td>0.875</td>
<td>0.783</td>
</tr>
<tr>
<td>159</td>
<td>6.203</td>
<td>0.930</td>
<td>4.335</td>
<td>3.005</td>
<td>1.305</td>
<td>3.943</td>
<td>2.733</td>
<td>1.187</td>
<td>0.859</td>
<td>0.782</td>
</tr>
<tr>
<td>160</td>
<td>5.792</td>
<td>0.929</td>
<td>4.243</td>
<td>2.941</td>
<td>1.277</td>
<td>3.917</td>
<td>2.715</td>
<td>1.179</td>
<td>0.849</td>
<td>0.783</td>
</tr>
<tr>
<td>161</td>
<td>6.339</td>
<td>0.934</td>
<td>4.343</td>
<td>3.010</td>
<td>1.307</td>
<td>3.782</td>
<td>2.622</td>
<td>1.139</td>
<td>0.885</td>
<td>0.771</td>
</tr>
<tr>
<td>162</td>
<td>7.781</td>
<td>0.906</td>
<td>4.328</td>
<td>3.000</td>
<td>1.303</td>
<td>4.116</td>
<td>2.853</td>
<td>1.239</td>
<td>0.767</td>
<td>0.729</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>188</td>
<td>7.637</td>
<td>0.593</td>
<td>2.388</td>
<td>1.655</td>
<td>0.719</td>
<td>2.346</td>
<td>1.626</td>
<td>0.706</td>
<td>0.398</td>
<td>0.391</td>
</tr>
<tr>
<td>189</td>
<td>4.669</td>
<td>0.611</td>
<td>1.895</td>
<td>1.314</td>
<td>0.570</td>
<td>1.835</td>
<td>1.272</td>
<td>0.553</td>
<td>0.372</td>
<td>0.361</td>
</tr>
<tr>
<td>190</td>
<td>4.473</td>
<td>0.502</td>
<td>1.388</td>
<td>0.962</td>
<td>0.418</td>
<td>1.367</td>
<td>0.948</td>
<td>0.412</td>
<td>0.265</td>
<td>0.260</td>
</tr>
<tr>
<td>191</td>
<td>5.883</td>
<td>0.793</td>
<td>2.888</td>
<td>2.002</td>
<td>0.869</td>
<td>2.802</td>
<td>1.942</td>
<td>0.844</td>
<td>0.536</td>
<td>0.520</td>
</tr>
<tr>
<td>192</td>
<td>5.036</td>
<td>0.559</td>
<td>1.747</td>
<td>1.211</td>
<td>0.526</td>
<td>1.722</td>
<td>1.194</td>
<td>0.518</td>
<td>0.322</td>
<td>0.317</td>
</tr>
<tr>
<td>193</td>
<td>5.337</td>
<td>0.683</td>
<td>2.378</td>
<td>1.648</td>
<td>0.716</td>
<td>2.336</td>
<td>1.619</td>
<td>0.703</td>
<td>0.430</td>
<td>0.430</td>
</tr>
<tr>
<td>194</td>
<td>4.498</td>
<td>0.401</td>
<td>1.119</td>
<td>0.775</td>
<td>0.337</td>
<td>1.106</td>
<td>0.766</td>
<td>0.333</td>
<td>0.209</td>
<td>0.206</td>
</tr>
<tr>
<td>195</td>
<td>9.977</td>
<td>0.937</td>
<td>4.727</td>
<td>3.277</td>
<td>1.423</td>
<td>4.533</td>
<td>3.142</td>
<td>1.365</td>
<td>0.777</td>
<td>0.745</td>
</tr>
<tr>
<td>196</td>
<td>6.042</td>
<td>0.861</td>
<td>3.731</td>
<td>2.586</td>
<td>1.123</td>
<td>3.469</td>
<td>2.404</td>
<td>1.044</td>
<td>0.727</td>
<td>0.676</td>
</tr>
<tr>
<td>197</td>
<td>8.477</td>
<td>0.914</td>
<td>4.513</td>
<td>3.128</td>
<td>1.359</td>
<td>4.235</td>
<td>2.935</td>
<td>1.275</td>
<td>0.792</td>
<td>0.743</td>
</tr>
<tr>
<td>198</td>
<td>7.401</td>
<td>0.841</td>
<td>3.815</td>
<td>2.644</td>
<td>1.148</td>
<td>3.588</td>
<td>2.487</td>
<td>1.080</td>
<td>0.691</td>
<td>0.650</td>
</tr>
<tr>
<td>199</td>
<td>7.474</td>
<td>0.897</td>
<td>4.232</td>
<td>2.934</td>
<td>1.274</td>
<td>4.004</td>
<td>2.775</td>
<td>1.205</td>
<td>0.762</td>
<td>0.721</td>
</tr>
<tr>
<td>200</td>
<td>7.563</td>
<td>0.871</td>
<td>4.079</td>
<td>2.827</td>
<td>1.228</td>
<td>3.843</td>
<td>2.664</td>
<td>1.157</td>
<td>0.734</td>
<td>0.692</td>
</tr>
<tr>
<td>201</td>
<td>6.265</td>
<td>0.866</td>
<td>3.818</td>
<td>2.846</td>
<td>1.149</td>
<td>3.565</td>
<td>2.471</td>
<td>1.073</td>
<td>0.733</td>
<td>0.684</td>
</tr>
<tr>
<td>202</td>
<td>7.104</td>
<td>0.901</td>
<td>4.215</td>
<td>2.921</td>
<td>1.269</td>
<td>3.931</td>
<td>2.725</td>
<td>1.183</td>
<td>0.782</td>
<td>0.729</td>
</tr>
<tr>
<td>203</td>
<td>5.295</td>
<td>0.901</td>
<td>3.968</td>
<td>2.750</td>
<td>1.194</td>
<td>3.689</td>
<td>2.557</td>
<td>1.111</td>
<td>0.809</td>
<td>0.752</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>204</td>
<td>5.306</td>
<td>0.697</td>
<td>3.068</td>
<td>2.126</td>
<td>0.923</td>
<td>2.890</td>
<td>2.004</td>
<td>0.870</td>
<td>0.576</td>
<td>0.543</td>
</tr>
<tr>
<td>205</td>
<td>6.328</td>
<td>0.621</td>
<td>2.753</td>
<td>1.908</td>
<td>0.829</td>
<td>2.578</td>
<td>1.787</td>
<td>0.779</td>
<td>0.737</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>6.342</td>
<td>0.910</td>
<td>4.120</td>
<td>2.855</td>
<td>1.240</td>
<td>3.689</td>
<td>2.796</td>
<td>1.152</td>
<td>0.689</td>
<td>0.653</td>
</tr>
<tr>
<td>207</td>
<td>8.837</td>
<td>0.838</td>
<td>4.251</td>
<td>2.796</td>
<td>1.240</td>
<td>3.689</td>
<td>2.796</td>
<td>1.152</td>
<td>0.689</td>
<td>0.653</td>
</tr>
<tr>
<td>208</td>
<td>10.294</td>
<td>0.932</td>
<td>4.276</td>
<td>2.796</td>
<td>1.240</td>
<td>3.689</td>
<td>2.796</td>
<td>1.152</td>
<td>0.689</td>
<td>0.653</td>
</tr>
<tr>
<td>209</td>
<td>11.000</td>
<td>0.756</td>
<td>3.563</td>
<td>2.470</td>
<td>1.073</td>
<td>2.734</td>
<td>2.332</td>
<td>1.034</td>
<td>0.562</td>
<td>0.542</td>
</tr>
<tr>
<td>210</td>
<td>214</td>
<td>0.455</td>
<td>1.993</td>
<td>1.382</td>
<td>0.600</td>
<td>1.964</td>
<td>1.361</td>
<td>0.591</td>
<td>0.336</td>
<td>0.331</td>
</tr>
<tr>
<td>211</td>
<td>215</td>
<td>0.423</td>
<td>1.742</td>
<td>1.207</td>
<td>0.524</td>
<td>1.630</td>
<td>1.120</td>
<td>0.491</td>
<td>0.440</td>
<td>0.440</td>
</tr>
<tr>
<td>212</td>
<td>216</td>
<td>0.464</td>
<td>1.742</td>
<td>1.207</td>
<td>0.524</td>
<td>1.630</td>
<td>1.120</td>
<td>0.491</td>
<td>0.440</td>
<td>0.440</td>
</tr>
<tr>
<td>213</td>
<td>217</td>
<td>0.475</td>
<td>1.624</td>
<td>1.123</td>
<td>0.531</td>
<td>1.498</td>
<td>1.130</td>
<td>0.492</td>
<td>0.461</td>
<td>0.461</td>
</tr>
<tr>
<td>214</td>
<td>218</td>
<td>0.421</td>
<td>1.888</td>
<td>1.223</td>
<td>0.558</td>
<td>1.859</td>
<td>1.353</td>
<td>0.588</td>
<td>0.560</td>
<td>0.560</td>
</tr>
<tr>
<td>215</td>
<td>219</td>
<td>0.421</td>
<td>1.888</td>
<td>1.223</td>
<td>0.558</td>
<td>1.859</td>
<td>1.353</td>
<td>0.588</td>
<td>0.560</td>
<td>0.560</td>
</tr>
<tr>
<td>216</td>
<td>220</td>
<td>0.560</td>
<td>1.764</td>
<td>1.123</td>
<td>0.531</td>
<td>1.498</td>
<td>1.130</td>
<td>0.492</td>
<td>0.461</td>
<td>0.461</td>
</tr>
<tr>
<td>217</td>
<td>221</td>
<td>0.445</td>
<td>3.861</td>
<td>2.724</td>
<td>2.274</td>
<td>1.592</td>
<td>1.353</td>
<td>0.588</td>
<td>0.560</td>
<td>0.560</td>
</tr>
<tr>
<td>218</td>
<td>222</td>
<td>0.457</td>
<td>1.888</td>
<td>1.223</td>
<td>0.558</td>
<td>1.859</td>
<td>1.353</td>
<td>0.588</td>
<td>0.560</td>
<td>0.560</td>
</tr>
<tr>
<td>219</td>
<td>223</td>
<td>0.409</td>
<td>1.803</td>
<td>1.223</td>
<td>0.558</td>
<td>1.859</td>
<td>1.353</td>
<td>0.588</td>
<td>0.560</td>
<td>0.560</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>226</td>
<td>5.862</td>
<td>0.353</td>
<td>1.581</td>
<td>1.096</td>
<td>0.476</td>
<td>1.510</td>
<td>1.047</td>
<td>0.455</td>
<td>0.291</td>
<td>0.278</td>
</tr>
<tr>
<td>228</td>
<td>5.106</td>
<td>0.394</td>
<td>1.692</td>
<td>1.172</td>
<td>0.509</td>
<td>1.621</td>
<td>1.123</td>
<td>0.488</td>
<td>0.325</td>
<td>0.311</td>
</tr>
<tr>
<td>230</td>
<td>5.765</td>
<td>0.375</td>
<td>1.653</td>
<td>1.146</td>
<td>0.498</td>
<td>1.587</td>
<td>1.100</td>
<td>0.478</td>
<td>0.305</td>
<td>0.293</td>
</tr>
<tr>
<td>232</td>
<td>6.413</td>
<td>0.737</td>
<td>3.188</td>
<td>2.210</td>
<td>0.960</td>
<td>3.032</td>
<td>2.102</td>
<td>0.913</td>
<td>0.591</td>
<td>0.562</td>
</tr>
<tr>
<td>234</td>
<td>6.795</td>
<td>0.445</td>
<td>2.002</td>
<td>1.388</td>
<td>0.603</td>
<td>1.919</td>
<td>1.330</td>
<td>0.578</td>
<td>0.355</td>
<td>0.340</td>
</tr>
<tr>
<td>236</td>
<td>6.100</td>
<td>0.322</td>
<td>1.532</td>
<td>1.062</td>
<td>0.461</td>
<td>1.460</td>
<td>1.012</td>
<td>0.440</td>
<td>0.279</td>
<td>0.266</td>
</tr>
<tr>
<td>238</td>
<td>6.119</td>
<td>0.584</td>
<td>2.559</td>
<td>1.773</td>
<td>0.770</td>
<td>2.428</td>
<td>1.683</td>
<td>0.731</td>
<td>0.478</td>
<td>0.453</td>
</tr>
<tr>
<td>240</td>
<td>5.477</td>
<td>0.340</td>
<td>1.543</td>
<td>1.069</td>
<td>0.464</td>
<td>1.473</td>
<td>1.021</td>
<td>0.444</td>
<td>0.290</td>
<td>0.277</td>
</tr>
<tr>
<td>241</td>
<td>5.546</td>
<td>0.347</td>
<td>1.567</td>
<td>1.086</td>
<td>0.472</td>
<td>1.514</td>
<td>1.050</td>
<td>0.456</td>
<td>0.289</td>
<td>0.279</td>
</tr>
<tr>
<td>242</td>
<td>6.162</td>
<td>0.424</td>
<td>1.883</td>
<td>1.305</td>
<td>0.567</td>
<td>1.811</td>
<td>1.256</td>
<td>0.545</td>
<td>0.341</td>
<td>0.323</td>
</tr>
<tr>
<td>246</td>
<td>6.577</td>
<td>0.853</td>
<td>3.749</td>
<td>2.598</td>
<td>1.128</td>
<td>3.520</td>
<td>2.440</td>
<td>1.060</td>
<td>0.704</td>
<td>0.661</td>
</tr>
<tr>
<td>248</td>
<td>7.271</td>
<td>0.695</td>
<td>3.030</td>
<td>2.100</td>
<td>0.912</td>
<td>2.885</td>
<td>1.999</td>
<td>0.868</td>
<td>0.504</td>
<td>0.514</td>
</tr>
<tr>
<td>249</td>
<td>6.719</td>
<td>0.907</td>
<td>4.067</td>
<td>2.819</td>
<td>1.224</td>
<td>3.787</td>
<td>2.625</td>
<td>1.140</td>
<td>0.769</td>
<td>0.717</td>
</tr>
<tr>
<td>251</td>
<td>7.126</td>
<td>0.631</td>
<td>2.738</td>
<td>1.898</td>
<td>0.824</td>
<td>2.600</td>
<td>1.802</td>
<td>0.783</td>
<td>0.490</td>
<td>0.466</td>
</tr>
<tr>
<td>253</td>
<td>6.952</td>
<td>0.502</td>
<td>2.252</td>
<td>1.561</td>
<td>0.678</td>
<td>2.172</td>
<td>1.506</td>
<td>0.654</td>
<td>0.395</td>
<td>0.381</td>
</tr>
<tr>
<td>256</td>
<td>6.898</td>
<td>0.875</td>
<td>3.844</td>
<td>2.655</td>
<td>1.157</td>
<td>3.589</td>
<td>2.488</td>
<td>1.080</td>
<td>0.718</td>
<td>0.670</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>278</td>
<td>3.747</td>
<td>0.691</td>
<td>2.448</td>
<td>1.697</td>
<td>0.737</td>
<td>2.371</td>
<td>1.644</td>
<td>0.714</td>
<td>0.521</td>
<td>0.504</td>
</tr>
<tr>
<td>279</td>
<td>3.128</td>
<td>0.479</td>
<td>1.593</td>
<td>1.104</td>
<td>0.479</td>
<td>1.547</td>
<td>1.072</td>
<td>0.466</td>
<td>0.352</td>
<td>0.342</td>
</tr>
<tr>
<td>280</td>
<td>4.426</td>
<td>0.719</td>
<td>2.443</td>
<td>1.693</td>
<td>0.735</td>
<td>2.397</td>
<td>1.661</td>
<td>0.722</td>
<td>0.480</td>
<td>0.471</td>
</tr>
<tr>
<td>281</td>
<td>4.153</td>
<td>0.631</td>
<td>2.173</td>
<td>1.506</td>
<td>0.654</td>
<td>2.099</td>
<td>1.455</td>
<td>0.632</td>
<td>0.447</td>
<td>0.432</td>
</tr>
<tr>
<td>282</td>
<td>4.672</td>
<td>0.506</td>
<td>2.110</td>
<td>1.462</td>
<td>0.653</td>
<td>2.049</td>
<td>1.420</td>
<td>0.617</td>
<td>0.411</td>
<td>0.399</td>
</tr>
<tr>
<td>283</td>
<td>3.901</td>
<td>0.908</td>
<td>3.611</td>
<td>2.503</td>
<td>1.087</td>
<td>2.843</td>
<td>1.971</td>
<td>0.856</td>
<td>0.948</td>
<td>0.747</td>
</tr>
<tr>
<td>284</td>
<td>12.178</td>
<td>0.840</td>
<td>3.877</td>
<td>2.687</td>
<td>1.167</td>
<td>3.769</td>
<td>2.613</td>
<td>1.135</td>
<td>0.591</td>
<td>0.575</td>
</tr>
<tr>
<td>285</td>
<td>10.401</td>
<td>0.597</td>
<td>2.816</td>
<td>1.952</td>
<td>0.848</td>
<td>2.739</td>
<td>1.899</td>
<td>0.825</td>
<td>0.442</td>
<td>0.430</td>
</tr>
<tr>
<td>286</td>
<td>7.902</td>
<td>0.446</td>
<td>1.995</td>
<td>1.383</td>
<td>0.600</td>
<td>1.937</td>
<td>1.343</td>
<td>0.583</td>
<td>0.334</td>
<td>0.324</td>
</tr>
<tr>
<td>287</td>
<td>5.459</td>
<td>0.609</td>
<td>2.222</td>
<td>1.540</td>
<td>0.669</td>
<td>2.175</td>
<td>1.508</td>
<td>0.655</td>
<td>0.410</td>
<td>0.401</td>
</tr>
<tr>
<td>288</td>
<td>6.134</td>
<td>0.206</td>
<td>0.946</td>
<td>0.656</td>
<td>0.285</td>
<td>0.929</td>
<td>0.644</td>
<td>0.280</td>
<td>0.163</td>
<td>0.160</td>
</tr>
<tr>
<td>293</td>
<td>4.147</td>
<td>0.656</td>
<td>2.390</td>
<td>1.657</td>
<td>0.720</td>
<td>2.265</td>
<td>1.570</td>
<td>0.682</td>
<td>0.509</td>
<td>0.482</td>
</tr>
<tr>
<td>297</td>
<td>5.439</td>
<td>0.581</td>
<td>2.517</td>
<td>1.745</td>
<td>0.758</td>
<td>2.387</td>
<td>1.655</td>
<td>0.719</td>
<td>0.487</td>
<td>0.462</td>
</tr>
<tr>
<td>298</td>
<td>4.632</td>
<td>0.364</td>
<td>1.599</td>
<td>1.108</td>
<td>0.481</td>
<td>1.527</td>
<td>1.058</td>
<td>0.460</td>
<td>0.298</td>
<td>0.285</td>
</tr>
<tr>
<td>299</td>
<td>4.689</td>
<td>0.863</td>
<td>3.544</td>
<td>2.456</td>
<td>1.067</td>
<td>3.201</td>
<td>2.219</td>
<td>0.964</td>
<td>0.773</td>
<td>0.698</td>
</tr>
<tr>
<td>300</td>
<td>4.700</td>
<td>0.362</td>
<td>1.587</td>
<td>1.100</td>
<td>0.478</td>
<td>1.518</td>
<td>1.052</td>
<td>0.457</td>
<td>0.312</td>
<td>0.298</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>302</td>
<td>4.661</td>
<td>0.292</td>
<td>1.313</td>
<td>0.910</td>
<td>0.395</td>
<td>1.266</td>
<td>0.877</td>
<td>0.381</td>
<td>0.254</td>
<td>0.245</td>
</tr>
<tr>
<td>303</td>
<td>5.621</td>
<td>0.279</td>
<td>1.292</td>
<td>0.896</td>
<td>0.389</td>
<td>1.245</td>
<td>0.863</td>
<td>0.375</td>
<td>0.237</td>
<td>0.228</td>
</tr>
<tr>
<td>308</td>
<td>5.208</td>
<td>0.618</td>
<td>2.591</td>
<td>1.796</td>
<td>0.780</td>
<td>2.441</td>
<td>1.692</td>
<td>0.735</td>
<td>0.514</td>
<td>0.484</td>
</tr>
<tr>
<td>310</td>
<td>4.271</td>
<td>0.462</td>
<td>1.890</td>
<td>1.310</td>
<td>0.569</td>
<td>1.800</td>
<td>1.248</td>
<td>0.542</td>
<td>0.389</td>
<td>0.370</td>
</tr>
<tr>
<td>312</td>
<td>4.379</td>
<td>0.882</td>
<td>3.578</td>
<td>2.480</td>
<td>1.077</td>
<td>3.228</td>
<td>2.237</td>
<td>0.972</td>
<td>0.802</td>
<td>0.724</td>
</tr>
<tr>
<td>313</td>
<td>3.990</td>
<td>0.808</td>
<td>3.078</td>
<td>2.133</td>
<td>0.926</td>
<td>2.849</td>
<td>1.975</td>
<td>0.858</td>
<td>0.690</td>
<td>0.639</td>
</tr>
<tr>
<td>315</td>
<td>5.232</td>
<td>0.801</td>
<td>3.189</td>
<td>2.211</td>
<td>0.960</td>
<td>2.928</td>
<td>2.030</td>
<td>0.882</td>
<td>0.657</td>
<td>0.603</td>
</tr>
<tr>
<td>316</td>
<td>4.913</td>
<td>0.514</td>
<td>2.049</td>
<td>1.420</td>
<td>0.617</td>
<td>1.947</td>
<td>1.349</td>
<td>0.586</td>
<td>0.406</td>
<td>0.386</td>
</tr>
<tr>
<td>319</td>
<td>4.597</td>
<td>0.820</td>
<td>3.168</td>
<td>2.196</td>
<td>0.954</td>
<td>2.910</td>
<td>2.017</td>
<td>0.876</td>
<td>0.682</td>
<td>0.627</td>
</tr>
<tr>
<td>324</td>
<td>7.091</td>
<td>0.541</td>
<td>2.412</td>
<td>1.672</td>
<td>0.726</td>
<td>2.315</td>
<td>1.605</td>
<td>0.697</td>
<td>0.425</td>
<td>0.408</td>
</tr>
<tr>
<td>325</td>
<td>9.660</td>
<td>0.694</td>
<td>3.091</td>
<td>2.143</td>
<td>0.931</td>
<td>2.971</td>
<td>2.059</td>
<td>0.894</td>
<td>0.504</td>
<td>0.485</td>
</tr>
<tr>
<td>330</td>
<td>3.643</td>
<td>0.803</td>
<td>2.966</td>
<td>2.056</td>
<td>0.893</td>
<td>2.707</td>
<td>1.876</td>
<td>0.815</td>
<td>0.698</td>
<td>0.637</td>
</tr>
<tr>
<td>332</td>
<td>4.846</td>
<td>0.782</td>
<td>3.073</td>
<td>2.130</td>
<td>0.925</td>
<td>2.859</td>
<td>1.982</td>
<td>0.861</td>
<td>0.639</td>
<td>0.595</td>
</tr>
<tr>
<td>335</td>
<td>3.822</td>
<td>0.826</td>
<td>3.155</td>
<td>2.187</td>
<td>0.950</td>
<td>2.034</td>
<td>1.965</td>
<td>0.853</td>
<td>0.743</td>
<td>0.667</td>
</tr>
<tr>
<td>336</td>
<td>4.289</td>
<td>0.862</td>
<td>3.464</td>
<td>2.401</td>
<td>1.043</td>
<td>3.182</td>
<td>2.206</td>
<td>0.958</td>
<td>0.766</td>
<td>0.704</td>
</tr>
<tr>
<td>343</td>
<td>5.200</td>
<td>0.882</td>
<td>3.735</td>
<td>2.589</td>
<td>1.124</td>
<td>3.289</td>
<td>2.279</td>
<td>0.990</td>
<td>0.804</td>
<td>0.708</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>345</td>
<td>4.879</td>
<td>0.782</td>
<td>3.165</td>
<td>2.194</td>
<td>0.953</td>
<td>2.690</td>
<td>1.865</td>
<td>0.810</td>
<td>0.710</td>
<td>0.603</td>
</tr>
<tr>
<td>346</td>
<td>5.690</td>
<td>0.787</td>
<td>3.241</td>
<td>2.246</td>
<td>0.976</td>
<td>3.004</td>
<td>2.082</td>
<td>0.904</td>
<td>0.642</td>
<td>0.596</td>
</tr>
<tr>
<td>347</td>
<td>2.875</td>
<td>0.714</td>
<td>2.560</td>
<td>1.775</td>
<td>0.771</td>
<td>2.285</td>
<td>1.584</td>
<td>0.688</td>
<td>0.673</td>
<td>0.600</td>
</tr>
<tr>
<td>348</td>
<td>4.080</td>
<td>0.883</td>
<td>3.560</td>
<td>2.468</td>
<td>1.072</td>
<td>3.291</td>
<td>2.281</td>
<td>0.991</td>
<td>0.798</td>
<td>0.738</td>
</tr>
<tr>
<td>349</td>
<td>3.850</td>
<td>0.767</td>
<td>2.858</td>
<td>1.981</td>
<td>0.860</td>
<td>2.696</td>
<td>1.869</td>
<td>0.812</td>
<td>9.632</td>
<td>0.596</td>
</tr>
<tr>
<td>350</td>
<td>4.455</td>
<td>0.340</td>
<td>1.493</td>
<td>1.035</td>
<td>0.449</td>
<td>1.435</td>
<td>0.995</td>
<td>0.432</td>
<td>0.296</td>
<td>0.284</td>
</tr>
<tr>
<td>351</td>
<td>6.392</td>
<td>0.351</td>
<td>1.633</td>
<td>1.132</td>
<td>0.492</td>
<td>1.560</td>
<td>1.082</td>
<td>0.470</td>
<td>0.294</td>
<td>0.281</td>
</tr>
<tr>
<td>352</td>
<td>5.113</td>
<td>0.473</td>
<td>2.038</td>
<td>1.413</td>
<td>0.614</td>
<td>1.924</td>
<td>1.334</td>
<td>0.579</td>
<td>0.401</td>
<td>0.378</td>
</tr>
<tr>
<td>353</td>
<td>5.168</td>
<td>0.492</td>
<td>2.033</td>
<td>1.409</td>
<td>0.612</td>
<td>1.902</td>
<td>1.318</td>
<td>0.573</td>
<td>0.403</td>
<td>0.377</td>
</tr>
<tr>
<td>354</td>
<td>4.779</td>
<td>0.421</td>
<td>1.802</td>
<td>1.249</td>
<td>0.542</td>
<td>1.713</td>
<td>1.188</td>
<td>0.516</td>
<td>0.357</td>
<td>0.340</td>
</tr>
<tr>
<td>355</td>
<td>4.724</td>
<td>0.752</td>
<td>3.071</td>
<td>2.128</td>
<td>0.924</td>
<td>2.901</td>
<td>2.011</td>
<td>0.873</td>
<td>0.632</td>
<td>0.597</td>
</tr>
<tr>
<td>356</td>
<td>6.904</td>
<td>0.826</td>
<td>3.523</td>
<td>2.442</td>
<td>1.061</td>
<td>3.340</td>
<td>2.315</td>
<td>1.005</td>
<td>0.645</td>
<td>0.612</td>
</tr>
<tr>
<td>357</td>
<td>6.052</td>
<td>0.855</td>
<td>3.751</td>
<td>2.600</td>
<td>1.129</td>
<td>3.539</td>
<td>2.453</td>
<td>1.065</td>
<td>0.720</td>
<td>0.679</td>
</tr>
<tr>
<td>358</td>
<td>3.411</td>
<td>0.757</td>
<td>2.745</td>
<td>1.903</td>
<td>0.826</td>
<td>2.508</td>
<td>1.739</td>
<td>0.755</td>
<td>0.658</td>
<td>0.602</td>
</tr>
<tr>
<td>359</td>
<td>3.973</td>
<td>0.165</td>
<td>0.726</td>
<td>0.503</td>
<td>0.219</td>
<td>0.700</td>
<td>0.485</td>
<td>0.211</td>
<td>0.145</td>
<td>0.140</td>
</tr>
<tr>
<td>360</td>
<td>4.427</td>
<td>0.270</td>
<td>1.226</td>
<td>0.850</td>
<td>0.369</td>
<td>1.172</td>
<td>0.812</td>
<td>0.353</td>
<td>0.243</td>
<td>0.232</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>362</td>
<td>4.591</td>
<td>0.697</td>
<td>2.618</td>
<td>1.815</td>
<td>0.788</td>
<td>2.459</td>
<td>1.704</td>
<td>0.740</td>
<td>0.545</td>
<td>0.512</td>
</tr>
<tr>
<td>364</td>
<td>7.367</td>
<td>0.884</td>
<td>3.804</td>
<td>2.637</td>
<td>1.145</td>
<td>3.684</td>
<td>2.554</td>
<td>1.109</td>
<td>0.667</td>
<td>0.646</td>
</tr>
<tr>
<td>365</td>
<td>5.719</td>
<td>0.851</td>
<td>3.759</td>
<td>2.606</td>
<td>1.132</td>
<td>3.573</td>
<td>2.477</td>
<td>1.076</td>
<td>0.727</td>
<td>0.691</td>
</tr>
<tr>
<td>366</td>
<td>5.116</td>
<td>0.858</td>
<td>3.677</td>
<td>2.548</td>
<td>1.107</td>
<td>3.251</td>
<td>2.253</td>
<td>0.979</td>
<td>0.792</td>
<td>0.700</td>
</tr>
<tr>
<td>367</td>
<td>5.414</td>
<td>0.920</td>
<td>4.070</td>
<td>2.821</td>
<td>1.225</td>
<td>3.473</td>
<td>2.407</td>
<td>1.046</td>
<td>0.888</td>
<td>0.758</td>
</tr>
<tr>
<td>368</td>
<td>5.757</td>
<td>0.922</td>
<td>4.140</td>
<td>2.870</td>
<td>1.246</td>
<td>3.754</td>
<td>2.602</td>
<td>1.130</td>
<td>0.844</td>
<td>0.765</td>
</tr>
<tr>
<td>369</td>
<td>5.278</td>
<td>0.886</td>
<td>3.874</td>
<td>2.685</td>
<td>1.166</td>
<td>3.439</td>
<td>2.384</td>
<td>1.035</td>
<td>0.824</td>
<td>0.732</td>
</tr>
<tr>
<td>370</td>
<td>5.223</td>
<td>0.873</td>
<td>3.709</td>
<td>2.571</td>
<td>1.116</td>
<td>3.254</td>
<td>2.255</td>
<td>0.979</td>
<td>0.799</td>
<td>0.701</td>
</tr>
<tr>
<td>371</td>
<td>5.381</td>
<td>0.915</td>
<td>4.078</td>
<td>2.826</td>
<td>1.227</td>
<td>3.698</td>
<td>2.563</td>
<td>1.113</td>
<td>0.848</td>
<td>0.769</td>
</tr>
<tr>
<td>372</td>
<td>5.472</td>
<td>0.921</td>
<td>4.149</td>
<td>2.876</td>
<td>1.249</td>
<td>3.740</td>
<td>2.592</td>
<td>1.126</td>
<td>0.863</td>
<td>0.778</td>
</tr>
<tr>
<td>373</td>
<td>6.123</td>
<td>0.887</td>
<td>3.901</td>
<td>2.704</td>
<td>1.174</td>
<td>3.435</td>
<td>2.381</td>
<td>1.034</td>
<td>0.795</td>
<td>0.700</td>
</tr>
<tr>
<td>374</td>
<td>7.145</td>
<td>0.609</td>
<td>2.730</td>
<td>1.893</td>
<td>0.822</td>
<td>2.601</td>
<td>1.803</td>
<td>0.783</td>
<td>0.486</td>
<td>0.453</td>
</tr>
<tr>
<td>375</td>
<td>6.330</td>
<td>0.491</td>
<td>2.211</td>
<td>1.533</td>
<td>0.666</td>
<td>2.114</td>
<td>1.465</td>
<td>0.636</td>
<td>0.403</td>
<td>0.385</td>
</tr>
<tr>
<td>376</td>
<td>6.701</td>
<td>0.675</td>
<td>3.056</td>
<td>2.118</td>
<td>0.920</td>
<td>2.860</td>
<td>1.982</td>
<td>0.861</td>
<td>0.567</td>
<td>0.530</td>
</tr>
<tr>
<td>377</td>
<td>6.417</td>
<td>0.846</td>
<td>3.844</td>
<td>2.664</td>
<td>1.157</td>
<td>3.613</td>
<td>2.504</td>
<td>1.088</td>
<td>0.727</td>
<td>0.684</td>
</tr>
<tr>
<td>378</td>
<td>4.965</td>
<td>0.922</td>
<td>4.017</td>
<td>2.784</td>
<td>1.209</td>
<td>3.509</td>
<td>2.432</td>
<td>1.056</td>
<td>0.800</td>
<td>0.776</td>
</tr>
<tr>
<td>Station</td>
<td>SR</td>
<td>SD</td>
<td>HPR(2)</td>
<td>HPR(E)</td>
<td>HPR(10)</td>
<td>H(2)</td>
<td>H(E)</td>
<td>H(10)</td>
<td>JPR(2)</td>
<td>J(2)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>380</td>
<td>6.794</td>
<td>0.854</td>
<td>3.970</td>
<td>2.752</td>
<td>1.195</td>
<td>3.764</td>
<td>2.609</td>
<td>1.133</td>
<td>0.732</td>
<td>0.694</td>
</tr>
<tr>
<td>381</td>
<td>6.987</td>
<td>0.732</td>
<td>3.382</td>
<td>2.344</td>
<td>1.018</td>
<td>3.228</td>
<td>2.237</td>
<td>0.972</td>
<td>0.609</td>
<td>0.581</td>
</tr>
<tr>
<td>382</td>
<td>7.887</td>
<td>0.863</td>
<td>4.108</td>
<td>2.848</td>
<td>1.237</td>
<td>3.918</td>
<td>2.716</td>
<td>1.179</td>
<td>0.721</td>
<td>0.687</td>
</tr>
<tr>
<td>383</td>
<td>6.842</td>
<td>0.854</td>
<td>3.694</td>
<td>2.560</td>
<td>1.112</td>
<td>3.429</td>
<td>2.377</td>
<td>1.032</td>
<td>0.694</td>
<td>0.644</td>
</tr>
<tr>
<td>384</td>
<td>6.757</td>
<td>0.849</td>
<td>3.708</td>
<td>2.571</td>
<td>1.116</td>
<td>3.454</td>
<td>2.394</td>
<td>1.040</td>
<td>0.697</td>
<td>0.649</td>
</tr>
<tr>
<td>385</td>
<td>6.069</td>
<td>0.835</td>
<td>3.698</td>
<td>2.564</td>
<td>1.113</td>
<td>3.480</td>
<td>2.412</td>
<td>1.048</td>
<td>0.710</td>
<td>0.668</td>
</tr>
<tr>
<td>386</td>
<td>6.913</td>
<td>0.853</td>
<td>3.785</td>
<td>2.624</td>
<td>1.139</td>
<td>3.473</td>
<td>2.407</td>
<td>1.045</td>
<td>0.716</td>
<td>0.657</td>
</tr>
<tr>
<td>387</td>
<td>5.985</td>
<td>0.891</td>
<td>3.933</td>
<td>2.726</td>
<td>1.184</td>
<td>3.644</td>
<td>2.526</td>
<td>1.097</td>
<td>0.773</td>
<td>0.716</td>
</tr>
<tr>
<td>388</td>
<td>6.411</td>
<td>0.861</td>
<td>3.847</td>
<td>2.666</td>
<td>1.158</td>
<td>3.615</td>
<td>2.505</td>
<td>1.088</td>
<td>0.728</td>
<td>0.684</td>
</tr>
<tr>
<td>389</td>
<td>7.149</td>
<td>0.891</td>
<td>4.105</td>
<td>2.845</td>
<td>1.236</td>
<td>3.842</td>
<td>2.663</td>
<td>1.157</td>
<td>0.756</td>
<td>0.708</td>
</tr>
<tr>
<td>390</td>
<td>8.305</td>
<td>0.907</td>
<td>4.304</td>
<td>2.984</td>
<td>1.296</td>
<td>4.097</td>
<td>2.840</td>
<td>1.233</td>
<td>0.748</td>
<td>0.712</td>
</tr>
<tr>
<td>391</td>
<td>7.044</td>
<td>0.878</td>
<td>3.997</td>
<td>2.771</td>
<td>1.203</td>
<td>3.779</td>
<td>2.619</td>
<td>1.138</td>
<td>0.732</td>
<td>0.692</td>
</tr>
</tbody>
</table>
Table C-IIIB

Density, number of species, and Biomass/m²
for each macrofauna station.

<table>
<thead>
<tr>
<th>Station</th>
<th>Indiv./m²</th>
<th>Species</th>
<th>Biomass/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>3076</td>
<td>98</td>
<td>5.7758</td>
</tr>
<tr>
<td>48</td>
<td>1848</td>
<td>83</td>
<td>5.1538</td>
</tr>
<tr>
<td>49</td>
<td>876</td>
<td>50</td>
<td>1.2168</td>
</tr>
<tr>
<td>50</td>
<td>392</td>
<td>45</td>
<td>0.6674</td>
</tr>
<tr>
<td>51</td>
<td>496</td>
<td>36</td>
<td>2.1110</td>
</tr>
<tr>
<td>52</td>
<td>612</td>
<td>50</td>
<td>1.1184</td>
</tr>
<tr>
<td>53</td>
<td>2856</td>
<td>56</td>
<td>23.4144</td>
</tr>
<tr>
<td>54</td>
<td>5040</td>
<td>125</td>
<td>17.5742</td>
</tr>
<tr>
<td>55</td>
<td>5050</td>
<td>117</td>
<td>9.5400</td>
</tr>
<tr>
<td>56</td>
<td>4788</td>
<td>79</td>
<td>34.4360</td>
</tr>
<tr>
<td>57</td>
<td>734</td>
<td>45</td>
<td>1.2338</td>
</tr>
<tr>
<td>58</td>
<td>362</td>
<td>32</td>
<td>1.1116</td>
</tr>
<tr>
<td>59</td>
<td>230</td>
<td>19</td>
<td>1.2574</td>
</tr>
<tr>
<td>60</td>
<td>544</td>
<td>34</td>
<td>1.3540</td>
</tr>
<tr>
<td>61</td>
<td>604</td>
<td>27</td>
<td>0.7912</td>
</tr>
<tr>
<td>62</td>
<td>518</td>
<td>22</td>
<td>4.0970</td>
</tr>
<tr>
<td>63</td>
<td>328</td>
<td>22</td>
<td>2.1262</td>
</tr>
<tr>
<td>64</td>
<td>460</td>
<td>36</td>
<td>4.2198</td>
</tr>
<tr>
<td>65</td>
<td>13420</td>
<td>75</td>
<td>49.7243</td>
</tr>
<tr>
<td>66</td>
<td>6016</td>
<td>82</td>
<td>31.4980</td>
</tr>
<tr>
<td>67</td>
<td>5386</td>
<td>104</td>
<td>10.0856</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m2</td>
<td>Species</td>
<td>Biomass/m2</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>68</td>
<td>3644</td>
<td>111</td>
<td>10.5004</td>
</tr>
<tr>
<td>69</td>
<td>5228</td>
<td>84</td>
<td>27.0502</td>
</tr>
<tr>
<td>70</td>
<td>8156</td>
<td>69</td>
<td>37.8773</td>
</tr>
<tr>
<td>71</td>
<td>194</td>
<td>25</td>
<td>1.3332</td>
</tr>
<tr>
<td>72</td>
<td>282</td>
<td>33</td>
<td>2.1374</td>
</tr>
<tr>
<td>73</td>
<td>470</td>
<td>36</td>
<td>3.6486</td>
</tr>
<tr>
<td>74</td>
<td>308</td>
<td>27</td>
<td>1.8482</td>
</tr>
<tr>
<td>75</td>
<td>1222</td>
<td>39</td>
<td>3.4662</td>
</tr>
<tr>
<td>76</td>
<td>726</td>
<td>34</td>
<td>3.7990</td>
</tr>
<tr>
<td>77</td>
<td>220</td>
<td>16</td>
<td>1.9128</td>
</tr>
<tr>
<td>78</td>
<td>576</td>
<td>28</td>
<td>3.4388</td>
</tr>
<tr>
<td>79</td>
<td>360</td>
<td>12</td>
<td>3.6200</td>
</tr>
<tr>
<td>80</td>
<td>262</td>
<td>25</td>
<td>1.7970</td>
</tr>
<tr>
<td>81</td>
<td>348</td>
<td>21</td>
<td>3.5076</td>
</tr>
<tr>
<td>82</td>
<td>302</td>
<td>22</td>
<td>3.4174</td>
</tr>
<tr>
<td>83</td>
<td>346</td>
<td>20</td>
<td>3.5292</td>
</tr>
<tr>
<td>84</td>
<td>398</td>
<td>20</td>
<td>2.7778</td>
</tr>
<tr>
<td>85</td>
<td>562</td>
<td>27</td>
<td>5.8410</td>
</tr>
<tr>
<td>86</td>
<td>244</td>
<td>20</td>
<td>2.0442</td>
</tr>
<tr>
<td>87</td>
<td>606</td>
<td>31</td>
<td>5.6492</td>
</tr>
<tr>
<td>88</td>
<td>2260</td>
<td>44</td>
<td>6.2638</td>
</tr>
<tr>
<td>89</td>
<td>2582</td>
<td>44</td>
<td>36.0316</td>
</tr>
<tr>
<td>90</td>
<td>2300</td>
<td>48</td>
<td>10.9624</td>
</tr>
<tr>
<td>91</td>
<td>20488</td>
<td>40</td>
<td>22.3042</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>92</td>
<td>780</td>
<td>25</td>
<td>3.7028</td>
</tr>
<tr>
<td>93</td>
<td>394</td>
<td>28</td>
<td>1.9204</td>
</tr>
<tr>
<td>94</td>
<td>264</td>
<td>25</td>
<td>1.9808</td>
</tr>
<tr>
<td>95</td>
<td>5188</td>
<td>66</td>
<td>19.2084</td>
</tr>
<tr>
<td>96</td>
<td>8570</td>
<td>73</td>
<td>39.6350</td>
</tr>
<tr>
<td>97</td>
<td>4426</td>
<td>98</td>
<td>9.3643</td>
</tr>
<tr>
<td>98</td>
<td>6292</td>
<td>106</td>
<td>10.9820</td>
</tr>
<tr>
<td>99</td>
<td>8306</td>
<td>88</td>
<td>42.0925</td>
</tr>
<tr>
<td>100</td>
<td>4712</td>
<td>64</td>
<td>19.6396</td>
</tr>
<tr>
<td>101</td>
<td>4124</td>
<td>39</td>
<td>3.4114</td>
</tr>
<tr>
<td>102</td>
<td>678</td>
<td>23</td>
<td>3.7268</td>
</tr>
<tr>
<td>103</td>
<td>4860</td>
<td>29</td>
<td>2.8828</td>
</tr>
<tr>
<td>104</td>
<td>366</td>
<td>38</td>
<td>1.3976</td>
</tr>
<tr>
<td>105</td>
<td>520</td>
<td>48</td>
<td>1.6470</td>
</tr>
<tr>
<td>106</td>
<td>504</td>
<td>38</td>
<td>1.7966</td>
</tr>
<tr>
<td>107</td>
<td>458</td>
<td>34</td>
<td>1.9298</td>
</tr>
<tr>
<td>111</td>
<td>826</td>
<td>29</td>
<td>0.6476</td>
</tr>
<tr>
<td>112</td>
<td>580</td>
<td>22</td>
<td>0.5182</td>
</tr>
<tr>
<td>113</td>
<td>94</td>
<td>12</td>
<td>0.2824</td>
</tr>
<tr>
<td>114</td>
<td>280</td>
<td>21</td>
<td>0.6632</td>
</tr>
<tr>
<td>115</td>
<td>108</td>
<td>18</td>
<td>0.8110</td>
</tr>
<tr>
<td>116</td>
<td>234</td>
<td>22</td>
<td>2.0396</td>
</tr>
<tr>
<td>117</td>
<td>340</td>
<td>35</td>
<td>1.9650</td>
</tr>
<tr>
<td>118</td>
<td>466</td>
<td>33</td>
<td>3.3754</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>119</td>
<td>280</td>
<td>22</td>
<td>1.5960</td>
</tr>
<tr>
<td>120</td>
<td>702</td>
<td>48</td>
<td>1.7716</td>
</tr>
<tr>
<td>121</td>
<td>196</td>
<td>16</td>
<td>1.8456</td>
</tr>
<tr>
<td>122</td>
<td>560</td>
<td>35</td>
<td>1.6922</td>
</tr>
<tr>
<td>123</td>
<td>334</td>
<td>29</td>
<td>1.4008</td>
</tr>
<tr>
<td>124</td>
<td>340</td>
<td>21</td>
<td>1.7602</td>
</tr>
<tr>
<td>125</td>
<td>218</td>
<td>14</td>
<td>1.9994</td>
</tr>
<tr>
<td>126</td>
<td>1450</td>
<td>56</td>
<td>4.2782</td>
</tr>
<tr>
<td>127</td>
<td>950</td>
<td>41</td>
<td>1.6794</td>
</tr>
<tr>
<td>128</td>
<td>380</td>
<td>36</td>
<td>1.3540</td>
</tr>
<tr>
<td>129</td>
<td>254</td>
<td>23</td>
<td>2.3270</td>
</tr>
<tr>
<td>130</td>
<td>280</td>
<td>22</td>
<td>1.9118</td>
</tr>
<tr>
<td>131</td>
<td>250</td>
<td>19</td>
<td>1.7148</td>
</tr>
<tr>
<td>132</td>
<td>406</td>
<td>23</td>
<td>4.1502</td>
</tr>
<tr>
<td>133</td>
<td>496</td>
<td>23</td>
<td>4.5220</td>
</tr>
<tr>
<td>134</td>
<td>246</td>
<td>24</td>
<td>2.1006</td>
</tr>
<tr>
<td>135</td>
<td>324</td>
<td>36</td>
<td>2.2148</td>
</tr>
<tr>
<td>136</td>
<td>2942</td>
<td>38</td>
<td>2.5162</td>
</tr>
<tr>
<td>137</td>
<td>6950</td>
<td>49</td>
<td>4.4848</td>
</tr>
<tr>
<td>141</td>
<td>3488</td>
<td>35</td>
<td>2.9864</td>
</tr>
<tr>
<td>142</td>
<td>1370</td>
<td>49</td>
<td>2.5250</td>
</tr>
<tr>
<td>143</td>
<td>8264</td>
<td>85</td>
<td>15.9813</td>
</tr>
<tr>
<td>144</td>
<td>7178</td>
<td>131</td>
<td>10.9714</td>
</tr>
<tr>
<td>145</td>
<td>1126</td>
<td>46</td>
<td>1.7278</td>
</tr>
</tbody>
</table>

403
<table>
<thead>
<tr>
<th>Station</th>
<th>Indiv./m²</th>
<th>Species</th>
<th>Biomass/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>1472</td>
<td>50</td>
<td>2.2604</td>
</tr>
<tr>
<td>147</td>
<td>11660</td>
<td>108</td>
<td>10.7238</td>
</tr>
<tr>
<td>148</td>
<td>7354</td>
<td>112</td>
<td>14.6613</td>
</tr>
<tr>
<td>149</td>
<td>4676</td>
<td>100</td>
<td>9.8605</td>
</tr>
<tr>
<td>150</td>
<td>10682</td>
<td>101</td>
<td>10.5598</td>
</tr>
<tr>
<td>151</td>
<td>1190</td>
<td>46</td>
<td>1.6640</td>
</tr>
<tr>
<td>152</td>
<td>944</td>
<td>29</td>
<td>1.2118</td>
</tr>
<tr>
<td>158</td>
<td>300</td>
<td>23</td>
<td>0.5476</td>
</tr>
<tr>
<td>160</td>
<td>2960</td>
<td>64</td>
<td>23.9885</td>
</tr>
<tr>
<td>161</td>
<td>730</td>
<td>57</td>
<td>1.2896</td>
</tr>
<tr>
<td>162</td>
<td>500</td>
<td>39</td>
<td>1.0354</td>
</tr>
<tr>
<td>163</td>
<td>578</td>
<td>26</td>
<td>0.9414</td>
</tr>
<tr>
<td>164</td>
<td>234</td>
<td>25</td>
<td>0.7436</td>
</tr>
<tr>
<td>165</td>
<td>348</td>
<td>33</td>
<td>1.4096</td>
</tr>
<tr>
<td>166</td>
<td>422</td>
<td>32</td>
<td>1.0586</td>
</tr>
<tr>
<td>167</td>
<td>194</td>
<td>30</td>
<td>1.3140</td>
</tr>
<tr>
<td>168</td>
<td>1086</td>
<td>50</td>
<td>2.9556</td>
</tr>
<tr>
<td>169</td>
<td>2352</td>
<td>61</td>
<td>13.7906</td>
</tr>
<tr>
<td>173</td>
<td>374</td>
<td>22</td>
<td>2.6316</td>
</tr>
<tr>
<td>174</td>
<td>644</td>
<td>26</td>
<td>3.6262</td>
</tr>
<tr>
<td>175</td>
<td>26320</td>
<td>48</td>
<td>1.5858</td>
</tr>
<tr>
<td>176</td>
<td>27782</td>
<td>50</td>
<td>12.9752</td>
</tr>
<tr>
<td>177</td>
<td>43802</td>
<td>45</td>
<td>11.9920</td>
</tr>
<tr>
<td>178</td>
<td>2368</td>
<td>26</td>
<td>4.2732</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>179</td>
<td>8968</td>
<td>35</td>
<td>6.8374</td>
</tr>
<tr>
<td>180</td>
<td>1144</td>
<td>37</td>
<td>3.2452</td>
</tr>
<tr>
<td>181</td>
<td>12124</td>
<td>49</td>
<td>5.9090</td>
</tr>
<tr>
<td>182</td>
<td>6956</td>
<td>60</td>
<td>8.4408</td>
</tr>
<tr>
<td>182</td>
<td>922</td>
<td>53</td>
<td>1.5952</td>
</tr>
<tr>
<td>184</td>
<td>832</td>
<td>16</td>
<td>1.1374</td>
</tr>
<tr>
<td>185</td>
<td>1500</td>
<td>35</td>
<td>4.2178</td>
</tr>
<tr>
<td>186</td>
<td>9454</td>
<td>42</td>
<td>10.9960</td>
</tr>
<tr>
<td>187</td>
<td>3436</td>
<td>46</td>
<td>5.1860</td>
</tr>
<tr>
<td>188</td>
<td>7654</td>
<td>64</td>
<td>52.2932</td>
</tr>
<tr>
<td>189</td>
<td>2346</td>
<td>34</td>
<td>4.9940</td>
</tr>
<tr>
<td>190</td>
<td>7826</td>
<td>38</td>
<td>13.3060</td>
</tr>
<tr>
<td>191</td>
<td>2128</td>
<td>42</td>
<td>9.7246</td>
</tr>
<tr>
<td>192</td>
<td>8370</td>
<td>43</td>
<td>23.9742</td>
</tr>
<tr>
<td>193</td>
<td>5234</td>
<td>43</td>
<td>118.2954</td>
</tr>
<tr>
<td>194</td>
<td>14556</td>
<td>41</td>
<td>23.1216</td>
</tr>
<tr>
<td>195</td>
<td>1650</td>
<td>68</td>
<td>1.9506</td>
</tr>
<tr>
<td>196</td>
<td>556</td>
<td>35</td>
<td>3.1810</td>
</tr>
<tr>
<td>197</td>
<td>820</td>
<td>52</td>
<td>1.9728</td>
</tr>
<tr>
<td>198</td>
<td>874</td>
<td>46</td>
<td>1.3334</td>
</tr>
<tr>
<td>199</td>
<td>942</td>
<td>47</td>
<td>2.4080</td>
</tr>
<tr>
<td>200</td>
<td>876</td>
<td>47</td>
<td>2.5800</td>
</tr>
<tr>
<td>201</td>
<td>626</td>
<td>37</td>
<td>1.7180</td>
</tr>
<tr>
<td>202</td>
<td>802</td>
<td>42</td>
<td>1.8898</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>203</td>
<td>478</td>
<td>30</td>
<td>1.0848</td>
</tr>
<tr>
<td>204</td>
<td>970</td>
<td>40</td>
<td>1.9394</td>
</tr>
<tr>
<td>205</td>
<td>1188</td>
<td>40</td>
<td>1.0548</td>
</tr>
<tr>
<td>206</td>
<td>800</td>
<td>39</td>
<td>3.0786</td>
</tr>
<tr>
<td>207</td>
<td>1266</td>
<td>58</td>
<td>2.2134</td>
</tr>
<tr>
<td>208</td>
<td>1342</td>
<td>68</td>
<td>2.4654</td>
</tr>
<tr>
<td>209</td>
<td>2880</td>
<td>81</td>
<td>18.5452</td>
</tr>
<tr>
<td>214</td>
<td>11018</td>
<td>61</td>
<td>35.1914</td>
</tr>
<tr>
<td>215</td>
<td>2802</td>
<td>52</td>
<td>5.7724</td>
</tr>
<tr>
<td>216</td>
<td>482</td>
<td>20</td>
<td>1.1456</td>
</tr>
<tr>
<td>217</td>
<td>498</td>
<td>13</td>
<td>0.6968</td>
</tr>
<tr>
<td>218</td>
<td>434</td>
<td>15</td>
<td>0.7142</td>
</tr>
<tr>
<td>219</td>
<td>284</td>
<td>13</td>
<td>0.4108</td>
</tr>
<tr>
<td>220</td>
<td>424</td>
<td>12</td>
<td>0.9504</td>
</tr>
<tr>
<td>221</td>
<td>3502</td>
<td>79</td>
<td>2.9180</td>
</tr>
<tr>
<td>222</td>
<td>1682</td>
<td>36</td>
<td>2.4902</td>
</tr>
<tr>
<td>223</td>
<td>2968</td>
<td>44</td>
<td>2.2998</td>
</tr>
<tr>
<td>226</td>
<td>2586</td>
<td>43</td>
<td>2.4572</td>
</tr>
<tr>
<td>228</td>
<td>2308</td>
<td>37</td>
<td>4.1524</td>
</tr>
<tr>
<td>230</td>
<td>2918</td>
<td>43</td>
<td>3.6720</td>
</tr>
<tr>
<td>232</td>
<td>1196</td>
<td>42</td>
<td>1.5784</td>
</tr>
<tr>
<td>234</td>
<td>2708</td>
<td>50</td>
<td>2.6904</td>
</tr>
<tr>
<td>236</td>
<td>2714</td>
<td>45</td>
<td>2.2974</td>
</tr>
<tr>
<td>238</td>
<td>1380</td>
<td>41</td>
<td>1.8392</td>
</tr>
</tbody>
</table>
Table C-IIIB (Continued)

<table>
<thead>
<tr>
<th>Station</th>
<th>Indiv./m²</th>
<th>Species</th>
<th>Biomass/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>3092</td>
<td>40</td>
<td>2.1084</td>
</tr>
<tr>
<td>241</td>
<td>3892</td>
<td>43</td>
<td>1.9948</td>
</tr>
<tr>
<td>242</td>
<td>2970</td>
<td>46</td>
<td>4.1384</td>
</tr>
<tr>
<td>246</td>
<td>752</td>
<td>40</td>
<td>3.3912</td>
</tr>
<tr>
<td>248</td>
<td>1472</td>
<td>49</td>
<td>3.2412</td>
</tr>
<tr>
<td>249</td>
<td>572</td>
<td>39</td>
<td>1.8780</td>
</tr>
<tr>
<td>251</td>
<td>1464</td>
<td>48</td>
<td>1.5018</td>
</tr>
<tr>
<td>253</td>
<td>3070</td>
<td>52</td>
<td>3.2844</td>
</tr>
<tr>
<td>256</td>
<td>660</td>
<td>41</td>
<td>2.1844</td>
</tr>
<tr>
<td>259</td>
<td>3378</td>
<td>52</td>
<td>2.9692</td>
</tr>
<tr>
<td>261</td>
<td>3306</td>
<td>50</td>
<td>3.4034</td>
</tr>
<tr>
<td>262</td>
<td>3338</td>
<td>49</td>
<td>2.5380</td>
</tr>
<tr>
<td>264</td>
<td>2350</td>
<td>42</td>
<td>2.0454</td>
</tr>
<tr>
<td>266</td>
<td>3950</td>
<td>57</td>
<td>2.4444</td>
</tr>
<tr>
<td>267</td>
<td>3736</td>
<td>57</td>
<td>3.5886</td>
</tr>
<tr>
<td>268</td>
<td>2692</td>
<td>46</td>
<td>1.4866</td>
</tr>
<tr>
<td>269</td>
<td>4362</td>
<td>46</td>
<td>1.3510</td>
</tr>
<tr>
<td>270</td>
<td>6950</td>
<td>51</td>
<td>2.1540</td>
</tr>
<tr>
<td>271</td>
<td>3118</td>
<td>39</td>
<td>1.7682</td>
</tr>
<tr>
<td>272</td>
<td>892</td>
<td>37</td>
<td>1.8036</td>
</tr>
<tr>
<td>273</td>
<td>2786</td>
<td>36</td>
<td>7.1870</td>
</tr>
<tr>
<td>274</td>
<td>3126</td>
<td>36</td>
<td>17.3958</td>
</tr>
<tr>
<td>275</td>
<td>1310</td>
<td>27</td>
<td>32.7444</td>
</tr>
<tr>
<td>276</td>
<td>1922</td>
<td>39</td>
<td>45.0134</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>277</td>
<td>2894</td>
<td>27</td>
<td>53.9304</td>
</tr>
<tr>
<td>278</td>
<td>1580</td>
<td>26</td>
<td>30.5072</td>
</tr>
<tr>
<td>279</td>
<td>2266</td>
<td>23</td>
<td>62.0158</td>
</tr>
<tr>
<td>280</td>
<td>4322</td>
<td>34</td>
<td>73.0873</td>
</tr>
<tr>
<td>281</td>
<td>2118</td>
<td>29</td>
<td>29.7808</td>
</tr>
<tr>
<td>282</td>
<td>2896</td>
<td>35</td>
<td>9.5252</td>
</tr>
<tr>
<td>283</td>
<td>56</td>
<td>14</td>
<td>0.1612</td>
</tr>
<tr>
<td>284</td>
<td>4146</td>
<td>94</td>
<td>22.6546</td>
</tr>
<tr>
<td>285</td>
<td>5310</td>
<td>83</td>
<td>2.0558</td>
</tr>
<tr>
<td>286</td>
<td>5114</td>
<td>63</td>
<td>2.0210</td>
</tr>
<tr>
<td>287</td>
<td>4392</td>
<td>43</td>
<td>13.6666</td>
</tr>
<tr>
<td>288</td>
<td>15670</td>
<td>56</td>
<td>25.1282</td>
</tr>
<tr>
<td>293</td>
<td>830</td>
<td>26</td>
<td>2.0946</td>
</tr>
<tr>
<td>297</td>
<td>1246</td>
<td>36</td>
<td>1.8320</td>
</tr>
<tr>
<td>298</td>
<td>2428</td>
<td>41</td>
<td>2.8772</td>
</tr>
<tr>
<td>299</td>
<td>270</td>
<td>24</td>
<td>1.2906</td>
</tr>
<tr>
<td>300</td>
<td>2242</td>
<td>34</td>
<td>1.4676</td>
</tr>
<tr>
<td>302</td>
<td>3648</td>
<td>36</td>
<td>2.4482</td>
</tr>
<tr>
<td>303</td>
<td>4202</td>
<td>44</td>
<td>2.0492</td>
</tr>
<tr>
<td>308</td>
<td>932</td>
<td>33</td>
<td>1.8282</td>
</tr>
<tr>
<td>310</td>
<td>1406</td>
<td>29</td>
<td>1.4542</td>
</tr>
<tr>
<td>312</td>
<td>242</td>
<td>22</td>
<td>0.9440</td>
</tr>
<tr>
<td>313</td>
<td>396</td>
<td>22</td>
<td>1.2776</td>
</tr>
<tr>
<td>315</td>
<td>422</td>
<td>29</td>
<td>1.1746</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>316</td>
<td>1348</td>
<td>33</td>
<td>2.1440</td>
</tr>
<tr>
<td>319</td>
<td>370</td>
<td>25</td>
<td>1.0062</td>
</tr>
<tr>
<td>324</td>
<td>2308</td>
<td>51</td>
<td>1.7382</td>
</tr>
<tr>
<td>325</td>
<td>2530</td>
<td>70</td>
<td>24.8204</td>
</tr>
<tr>
<td>330</td>
<td>350</td>
<td>19</td>
<td>1.4008</td>
</tr>
<tr>
<td>332</td>
<td>526</td>
<td>28</td>
<td>2.7948</td>
</tr>
<tr>
<td>335</td>
<td>222</td>
<td>19</td>
<td>1.5616</td>
</tr>
<tr>
<td>336</td>
<td>338</td>
<td>23</td>
<td>1.4060</td>
</tr>
<tr>
<td>343</td>
<td>202</td>
<td>25</td>
<td>1.2062</td>
</tr>
<tr>
<td>345</td>
<td>148</td>
<td>22</td>
<td>1.6104</td>
</tr>
<tr>
<td>346</td>
<td>554</td>
<td>33</td>
<td>1.5344</td>
</tr>
<tr>
<td>347</td>
<td>184</td>
<td>14</td>
<td>1.3558</td>
</tr>
<tr>
<td>348</td>
<td>344</td>
<td>22</td>
<td>1.6654</td>
</tr>
<tr>
<td>349</td>
<td>606</td>
<td>23</td>
<td>0.6378</td>
</tr>
<tr>
<td>350</td>
<td>2634</td>
<td>33</td>
<td>2.8448</td>
</tr>
<tr>
<td>351</td>
<td>2670</td>
<td>47</td>
<td>1.4116</td>
</tr>
<tr>
<td>352</td>
<td>1588</td>
<td>34</td>
<td>1.2284</td>
</tr>
<tr>
<td>353</td>
<td>978</td>
<td>33</td>
<td>1.5402</td>
</tr>
<tr>
<td>354</td>
<td>1618</td>
<td>33</td>
<td>1.7022</td>
</tr>
<tr>
<td>356</td>
<td>750</td>
<td>29</td>
<td>1.1032</td>
</tr>
<tr>
<td>357</td>
<td>1014</td>
<td>44</td>
<td>3.5274</td>
</tr>
<tr>
<td>358</td>
<td>766</td>
<td>37</td>
<td>11.2380</td>
</tr>
<tr>
<td>359</td>
<td>292</td>
<td>18</td>
<td>2.0092</td>
</tr>
<tr>
<td>360</td>
<td>4890</td>
<td>32</td>
<td>5.1258</td>
</tr>
<tr>
<td>Station</td>
<td>Indiv./m²</td>
<td>Species</td>
<td>Biomass/m²</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>361</td>
<td>2754</td>
<td>33</td>
<td>4.3550</td>
</tr>
<tr>
<td>362</td>
<td>716</td>
<td>28</td>
<td>4.3700</td>
</tr>
<tr>
<td>364</td>
<td>2030</td>
<td>52</td>
<td>8.7600</td>
</tr>
<tr>
<td>365</td>
<td>910</td>
<td>36</td>
<td>6.0460</td>
</tr>
<tr>
<td>366</td>
<td>218</td>
<td>25</td>
<td>3.1920</td>
</tr>
<tr>
<td>367</td>
<td>176</td>
<td>24</td>
<td>0.4388</td>
</tr>
<tr>
<td>368</td>
<td>308</td>
<td>30</td>
<td>1.6104</td>
</tr>
<tr>
<td>369</td>
<td>286</td>
<td>26</td>
<td>1.3112</td>
</tr>
<tr>
<td>370</td>
<td>198</td>
<td>25</td>
<td>1.0784</td>
</tr>
<tr>
<td>371</td>
<td>302</td>
<td>28</td>
<td>2.7152</td>
</tr>
<tr>
<td>372</td>
<td>278</td>
<td>28</td>
<td>1.3738</td>
</tr>
<tr>
<td>373</td>
<td>228</td>
<td>30</td>
<td>0.5786</td>
</tr>
<tr>
<td>374</td>
<td>1654</td>
<td>49</td>
<td>1.8262</td>
</tr>
<tr>
<td>375</td>
<td>2088</td>
<td>45</td>
<td>2.0020</td>
</tr>
<tr>
<td>376</td>
<td>908</td>
<td>42</td>
<td>1.6968</td>
</tr>
<tr>
<td>377</td>
<td>746</td>
<td>39</td>
<td>1.1582</td>
</tr>
<tr>
<td>378</td>
<td>168</td>
<td>23</td>
<td>0.7684</td>
</tr>
<tr>
<td>380</td>
<td>968</td>
<td>43</td>
<td>2.0358</td>
</tr>
<tr>
<td>381</td>
<td>1446</td>
<td>47</td>
<td>2.5378</td>
</tr>
<tr>
<td>382</td>
<td>1286</td>
<td>52</td>
<td>2.2990</td>
</tr>
<tr>
<td>383</td>
<td>748</td>
<td>40</td>
<td>20.0198</td>
</tr>
<tr>
<td>384</td>
<td>642</td>
<td>40</td>
<td>1.2362</td>
</tr>
<tr>
<td>385</td>
<td>754</td>
<td>37</td>
<td>1.0252</td>
</tr>
<tr>
<td>386</td>
<td>488</td>
<td>39</td>
<td>0.9384</td>
</tr>
</tbody>
</table>
Table C-IIIB (concluded)

<table>
<thead>
<tr>
<th>Station</th>
<th>Indiv./m²</th>
<th>Species</th>
<th>Biomass/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>387</td>
<td>496</td>
<td>34</td>
<td>1.4614</td>
</tr>
<tr>
<td>388</td>
<td>750</td>
<td>39</td>
<td>0.9964</td>
</tr>
<tr>
<td>389</td>
<td>712</td>
<td>43</td>
<td>2.2810</td>
</tr>
<tr>
<td>390</td>
<td>1182</td>
<td>54</td>
<td>1.3676</td>
</tr>
<tr>
<td>391</td>
<td>896</td>
<td>44</td>
<td>2.2886</td>
</tr>
</tbody>
</table>
Richardson, Michael Donald
Aquatic disposal field investigations, Columbia River disposal site, Oregon; Appendix C: The effects of dredged material disposal on benthic assemblages / by Michael D. Richardson, Andrew G. Carey, Jr., William A. Colgate, School of Oceanography, Oregon State University, Corvallis, Oregon. Vicksburg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1977.
411 p. : ill. ; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station ; D-77-30, Appendix C)
Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Contract No. DACW57-75-C-0137 and DACW57-76-C-0092 (DMRP Work Unit No. 1A07C)
Tables C-IA, C-IB, C-IIB, and C-IIC on microfiche in pocket.
References: p. 203-208.
1. Benthos. 2. Columbia River disposal site. 3. Disposal areas. 4. Dredged material disposal. 5. Field investigations.
(Continued on next card)

Richardson, Michael Donald
Aquatic disposal field investigations, Columbia River disposal site, Oregon; Appendix C: The effects of dredged material disposal on benthic assemblages ... 1977.
(Card 2)
TA7.W34 no.D-77-30 Appendix C

*U.S. GOVERNMENT PRINTING OFFICE: 1978-740-307 3807 REGION NO. 4
REPORT TITLE: Aquatic Disposal Field Investigations, Columbia River Disposal Site, Oregon; The Effects of Dredged Material Disposal on Benthic Assemblages

Tables C-1A, C-1B, C-11B, and C-11C

REPORT NO. TR D-77-30, Appendix C

COPIES OF MICROFICHE 750

JOB NO. 607-Y198, BSARCL

PRIORITY NO. 42

NO. OF PAGES 167

RETURN ORIGINALS TO Dorothy Booth, EEL

pp 331-356, 357-381, 209-307, 308-312

Dick Smart/Mert Pikul

Editor/Assistant

Publications and Graphic Arts Division

Reports Branch
<table>
<thead>
<tr>
<th>Screen Size (mm)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Time</th>
<th>Bottom Depth</th>
<th>Station Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>46° 06.0'</td>
<td>124° 09.5'</td>
<td>1 Oct 74</td>
<td>07:15</td>
<td>07:46</td>
<td>07:15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>46° 06.0'</td>
<td>124° 09.5'</td>
<td>1 Oct 74</td>
<td>08:10</td>
<td>08:35</td>
<td>08:10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>46° 06.0'</td>
<td>124° 09.5'</td>
<td>1 Oct 74</td>
<td>08:54</td>
<td>08:54</td>
<td>08:54</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>46° 08.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>09:28</td>
<td>09:28</td>
<td>09:28</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>46° 06.0'</td>
<td>124° 09.5'</td>
<td>1 Oct 74</td>
<td>10:08</td>
<td>10:08</td>
<td>10:08</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>46° 08.0'</td>
<td>124° 05.0'</td>
<td>1 Oct 74</td>
<td>10:39</td>
<td>10:39</td>
<td>10:39</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>46° 06.0'</td>
<td>124° 10.5'</td>
<td>1 Oct 74</td>
<td>11:02</td>
<td>11:02</td>
<td>11:02</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>11:11</td>
<td>11:11</td>
<td>11:11</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>11:41</td>
<td>11:41</td>
<td>11:41</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>12:17</td>
<td>12:17</td>
<td>12:17</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>13:01</td>
<td>13:01</td>
<td>13:01</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>13:21</td>
<td>13:21</td>
<td>13:21</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>13:36</td>
<td>13:36</td>
<td>13:36</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>46° 12.0'</td>
<td>124° 02.0'</td>
<td>1 Oct 74</td>
<td>14:03</td>
<td>14:03</td>
<td>14:03</td>
</tr>
</tbody>
</table>

Table 5-A: Station Data for Smith-McIntyre Grab Samples
<table>
<thead>
<tr>
<th>Station No.</th>
<th>S-W Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>21</td>
<td>C7409A</td>
<td>46° 16.0'</td>
<td>124° 08.0'</td>
<td>1 Oct 74</td>
<td>15:01</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>46° 16.0'</td>
<td>124° 10.0'</td>
<td>"</td>
<td>15:14</td>
<td>26</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>46° 16.0'</td>
<td>124° 12.0'</td>
<td>"</td>
<td>15:25</td>
<td>45</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>46° 16.0'</td>
<td>124° 14.5'</td>
<td>"</td>
<td>13:46</td>
<td>63</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>46° 16.0'</td>
<td>124° 17.0'</td>
<td>"</td>
<td>16:16</td>
<td>88</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>46° 15.0'</td>
<td>124° 14.25'</td>
<td>2 Oct 74</td>
<td>12:58</td>
<td>46</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>46° 14.5'</td>
<td>124° 11.25'</td>
<td>"</td>
<td>13:23</td>
<td>48</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>46° 14.5'</td>
<td>124° 10.75'</td>
<td>"</td>
<td>13:35</td>
<td>48</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>46° 14.5'</td>
<td>124° 10.5'</td>
<td>"</td>
<td>13:45</td>
<td>39</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>46° 14.0'</td>
<td>124° 11.25'</td>
<td>"</td>
<td>14:05</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>46° 14.0'</td>
<td>124° 10.75'</td>
<td>"</td>
<td>14:17</td>
<td>44</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>46° 14.0'</td>
<td>124° 10.25'</td>
<td>"</td>
<td>14:27</td>
<td>28</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>46° 14.0'</td>
<td>124° 10.0'</td>
<td>"</td>
<td>14:37</td>
<td>27</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>46° 14.0'</td>
<td>124° 09.25'</td>
<td>"</td>
<td>14:47</td>
<td>25</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>46° 13.5'</td>
<td>124° 11.25'</td>
<td>"</td>
<td>15:13</td>
<td>55</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>46° 13.5'</td>
<td>124° 10.25'</td>
<td>"</td>
<td>15:40</td>
<td>39</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>46° 13.5'</td>
<td>124° 09.75'</td>
<td>"</td>
<td>15:46</td>
<td>33</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>46° 13.5'</td>
<td>124° 09.5'</td>
<td>"</td>
<td>16:05</td>
<td>29</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>46° 13.5'</td>
<td>124° 09.0'</td>
<td>"</td>
<td>16:15</td>
<td>27</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>46° 13.0'</td>
<td>124° 10.25'</td>
<td>"</td>
<td>16:34</td>
<td>49</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>"</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Brt: (m)</td>
<td>Depth (m)</td>
<td>Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>C7409A</td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td>2 Oct 74</td>
<td>16:50</td>
<td>41</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>17:00</td>
<td>38</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>17:10</td>
<td>33</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>46° 12.5'</td>
<td>124° 09.5'</td>
<td></td>
<td>17:25</td>
<td>38</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>46° 12.5'</td>
<td>124° 09.0'</td>
<td></td>
<td>17:30</td>
<td>37</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td>46° 12.5'</td>
<td>124° 08.25'</td>
<td></td>
<td>17:40</td>
<td>32</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>C7412B</td>
<td>46° 06.0'</td>
<td>124° 12.9'</td>
<td>4 Dec 74</td>
<td>18:57</td>
<td>91</td>
<td>3,900</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:29</td>
<td></td>
<td>5,800</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:57</td>
<td></td>
<td>6,700</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:09</td>
<td></td>
<td>8,000</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:20</td>
<td></td>
<td>7,500</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:50</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td></td>
<td>46° 06.0'</td>
<td>124° 08.0'</td>
<td></td>
<td>21:28</td>
<td>70</td>
<td>5,600</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:36</td>
<td></td>
<td>2,500</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:45</td>
<td></td>
<td>2,500</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:53</td>
<td></td>
<td>3,100</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:00</td>
<td></td>
<td>3,100</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:08</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>49</td>
<td>59</td>
<td></td>
<td>46° 06.0'</td>
<td>124° 04.5'</td>
<td></td>
<td>22:36</td>
<td>46</td>
<td>3,500</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:44</td>
<td></td>
<td>2,600</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Screen Size (mm)</td>
<td>Sediment Type</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>C7412B</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>23:49</td>
<td>46</td>
<td>3,600</td>
<td>1.0</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>61</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>23:02</td>
<td>23:14</td>
<td>3,600</td>
<td>1.0</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>62</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>23:09</td>
<td>29</td>
<td>2,900</td>
<td>1.0</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>63</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>23:48</td>
<td>23:54</td>
<td>1,800</td>
<td>1,800</td>
<td>5,500</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>64</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>00:18</td>
<td>00:26</td>
<td>6,100</td>
<td>5,500</td>
<td>5,500</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>65</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>01:11</td>
<td>01:21</td>
<td>5,500</td>
<td>5,500</td>
<td>5,500</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>66</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>01:30</td>
<td>01:37</td>
<td>5,500</td>
<td>5,500</td>
<td>5,500</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>67</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>01:45</td>
<td>01:52</td>
<td>5,500</td>
<td>5,500</td>
<td>5,500</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>68</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>02:08</td>
<td>03:08</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
<td>7,400</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>69</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>03:16</td>
<td>03:32</td>
<td>7,400</td>
<td>7,400</td>
<td>7,400</td>
<td>7,400</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>70</td>
<td>46°06.0'</td>
<td>124°04.5'</td>
<td>4 Dec 74</td>
<td>03:40</td>
<td>03:40</td>
<td>7,400</td>
<td>7,400</td>
<td>7,400</td>
<td>7,400</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Sediment Volume (cc)</td>
<td>Depth (m)</td>
<td>Time</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>85</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>88</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>91</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>94</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>97</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
- Geological
- Silty-sand
- Sand

Additional Information:
- Cruise: CM128
- Latitude: 46° 09.0' N
- Longitude: 124° 07.5' E
- Date: 5 Dec 74
- Time: 03:49
- Depth: 7,400 m

Sediment Volume:
- 5,300 cc

Depth:
- 7,400 m

Time:
- 03:49
<table>
<thead>
<tr>
<th>Station</th>
<th>S-M Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>101</td>
<td>C7412B</td>
<td>46° 12.0'</td>
<td>124° 12.0'</td>
<td>5 Dec 74</td>
<td>09:09</td>
<td>62</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:16</td>
<td></td>
<td>1,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:25</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:32</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:40</td>
<td></td>
<td>3,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:48</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>57</td>
<td>107</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>10:09</td>
<td>40</td>
<td>1,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:16</td>
<td></td>
<td>1,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:23</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:28</td>
<td></td>
<td>4,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:38</td>
<td></td>
<td>3,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:46</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>58</td>
<td>113</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 06.5'</td>
<td></td>
<td>11:08</td>
<td>27</td>
<td>2,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:15</td>
<td></td>
<td>1,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:18</td>
<td></td>
<td>3,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:23</td>
<td></td>
<td>3,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:28</td>
<td></td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:33</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>59</td>
<td>119</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 02.5'</td>
<td></td>
<td>12:02</td>
<td>16</td>
<td>2,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:08</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Date</td>
<td>Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Size (mm)</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>C7412B</td>
<td>5 Dec 74</td>
<td>12:13</td>
<td>16</td>
<td>3,400</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>121</td>
<td>12:20</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>124</td>
<td>12:21</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>126</td>
<td>12:25</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>128</td>
<td>12:26</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>130</td>
<td>12:27</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>132</td>
<td>12:28</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>134</td>
<td>12:29</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>136</td>
<td>12:30</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>138</td>
<td>12:31</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>140</td>
<td>12:32</td>
<td>12:24</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table contains data on sediment collection and analysis, including station numbers, cruise numbers, dates, times, depths, sediment volumes, types, sizes, and remarks.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>S-M Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>141</td>
<td>C7412B</td>
<td>46° 13.0'</td>
<td>124° 07.0'</td>
<td>5 Dec 74</td>
<td>15:42</td>
<td>24</td>
<td>4,600</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>142</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:46</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>143</td>
<td>-</td>
<td>46° 13.9'</td>
<td>124° 08.0'</td>
<td>-</td>
<td>16:02</td>
<td>17</td>
<td>6,700</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>144</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:13</td>
<td>-</td>
<td>4,600</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:20</td>
<td>-</td>
<td>6,500</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:24</td>
<td>-</td>
<td>6,700</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:29</td>
<td>-</td>
<td>7,000</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:37</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>149</td>
<td>-</td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td>-</td>
<td>16:52</td>
<td>29</td>
<td>8,400</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:58</td>
<td>-</td>
<td>6,300</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:04</td>
<td>-</td>
<td>8,400</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:11</td>
<td>-</td>
<td>10,300</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:17</td>
<td>35</td>
<td>6,700</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:25</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>155</td>
<td>-</td>
<td>46° 14.0'</td>
<td>124° 11.0'</td>
<td>-</td>
<td>17:39</td>
<td>49</td>
<td>12,700</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>156</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:47</td>
<td>-</td>
<td>13,800</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:53</td>
<td>-</td>
<td>13,600</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:16</td>
<td>-</td>
<td>12,700</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:25</td>
<td>-</td>
<td>9,300</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:37</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>66</td>
<td>161</td>
<td>C7412B</td>
<td>46° 14.0'</td>
<td>124° 13.5'</td>
<td>5 Dec 74</td>
<td>18:58</td>
<td>66</td>
<td>9,300</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:05</td>
<td></td>
<td>9,700</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:13</td>
<td></td>
<td>9,300</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:21</td>
<td></td>
<td>10,006</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:29</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:39</td>
<td></td>
<td>--</td>
<td>Sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td>46° 14.0'</td>
<td>124° 16.0'</td>
<td></td>
<td>20:44</td>
<td>81</td>
<td>11,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:51</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:00</td>
<td></td>
<td>11,400</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:07</td>
<td></td>
<td>10,500</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:15</td>
<td></td>
<td>11,900</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:24</td>
<td></td>
<td>--</td>
<td>Sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>68</td>
<td>173</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 15.5'</td>
<td></td>
<td>21:46</td>
<td>82</td>
<td>11,400</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:54</td>
<td></td>
<td>8,800</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:02</td>
<td></td>
<td>8,800</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:10</td>
<td></td>
<td>9,700</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:18</td>
<td></td>
<td>13,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:26</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>69</td>
<td>179</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 13.5'</td>
<td></td>
<td>23:00</td>
<td>68</td>
<td>10,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:07</td>
<td></td>
<td>8,800</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>69</td>
<td>181</td>
<td>C7412B</td>
<td>46° 13.0'</td>
<td>124° 13.5'</td>
<td>5 Dec 74</td>
<td>23:17</td>
<td>68</td>
<td>6,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:25</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:31</td>
<td></td>
<td>8,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:44</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>70</td>
<td>185</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 11.0'</td>
<td>6 Dec 74</td>
<td>00:31</td>
<td>51</td>
<td>9,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:40</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:11</td>
<td>48</td>
<td>8,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:18</td>
<td>50</td>
<td>8,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:27</td>
<td>49</td>
<td>9,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:32</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>71</td>
<td>191</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>08:57</td>
<td>31</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:06</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:04</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:09</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:15</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:19</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>72</td>
<td>197</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 08.5'</td>
<td></td>
<td>09:52</td>
<td>26</td>
<td>3,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:56</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:06</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:08</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-W Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>72</td>
<td>201</td>
<td>C7412</td>
<td>46° 13.0'</td>
<td>124° 08.5'</td>
<td>7 Dec 74</td>
<td>10:13</td>
<td>26</td>
<td>5,600</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>73</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:17</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>74</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:42</td>
<td></td>
<td>6,300</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>75</td>
<td>209</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>11:22</td>
<td>35</td>
<td>5,100</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>76</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:07</td>
<td></td>
<td>6,500</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>77</td>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:15</td>
<td></td>
<td>6,000</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>78</td>
<td>212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:20</td>
<td></td>
<td>5,600</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>79</td>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:24</td>
<td></td>
<td>3,400</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>80</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:32</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>81</td>
<td>215</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>11:40</td>
<td>42</td>
<td>10,300</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>82</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:49</td>
<td></td>
<td>6,500</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>83</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:56</td>
<td></td>
<td>6,000</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>84</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:00</td>
<td></td>
<td>5,500</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>85</td>
<td>219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:08</td>
<td></td>
<td>6,700</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>86</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:14</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>76</td>
<td>221</td>
<td>C74128</td>
<td>46° 13.5'</td>
<td>124° 10.25'</td>
<td>7 Dec 74</td>
<td>12:30</td>
<td>37</td>
<td>5,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>77</td>
<td>222</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12:39</td>
<td>-</td>
<td>6,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>78</td>
<td>223</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12:50</td>
<td>-</td>
<td>6,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>79</td>
<td>224</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12:58</td>
<td>-</td>
<td>6,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>80</td>
<td>225</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13:05</td>
<td>-</td>
<td>8,600</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>81</td>
<td>226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13:15</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>82</td>
<td>227</td>
<td>-</td>
<td>46° 13.5'</td>
<td>124° 09.75'</td>
<td>-</td>
<td>13:34</td>
<td>27</td>
<td>7</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>83</td>
<td>228</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13:40</td>
<td>-</td>
<td>5</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>84</td>
<td>229</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13:48</td>
<td>-</td>
<td>5</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>85</td>
<td>230</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13:52</td>
<td>-</td>
<td>5</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>86</td>
<td>231</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13:57</td>
<td>-</td>
<td>7</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>87</td>
<td>232</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:02</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>88</td>
<td>233</td>
<td>-</td>
<td>46° 13.5'</td>
<td>124° 09.5'</td>
<td>-</td>
<td>14:10</td>
<td>22</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>89</td>
<td>234</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:22</td>
<td>-</td>
<td>7,900</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>90</td>
<td>235</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:36</td>
<td>-</td>
<td>7,400</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>91</td>
<td>236</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:58</td>
<td>-</td>
<td>10,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>92</td>
<td>237</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:03</td>
<td>-</td>
<td>4,200</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>93</td>
<td>238</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:09</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>94</td>
<td>239</td>
<td>-</td>
<td>46° 13.5'</td>
<td>124° 09.0'</td>
<td>-</td>
<td>15:23</td>
<td>20</td>
<td>2,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>95</td>
<td>240</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:27</td>
<td>-</td>
<td>5,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>242</td>
<td>46° 13.5'</td>
<td>124° 08.0'</td>
<td>20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>245</td>
<td>46° 13.5'</td>
<td>124° 08.0'</td>
<td>20</td>
<td>6,300</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>246</td>
<td>46° 13.5'</td>
<td>124° 08.0'</td>
<td>16</td>
<td>5,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>248</td>
<td>46° 13.5'</td>
<td>124° 08.0'</td>
<td>16</td>
<td>4,400</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>250</td>
<td>46° 13.5'</td>
<td>124° 08.0'</td>
<td>16</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>15:41</td>
<td>15:45</td>
<td>15:59</td>
<td>15:25</td>
<td>5,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>16:06</td>
<td>16:41</td>
<td>16:45</td>
<td>16:29</td>
<td>5,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>16:50</td>
<td>16:54</td>
<td>16:59</td>
<td>17:02</td>
<td>5,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17:16</td>
<td>17:20</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17:26</td>
<td>17:30</td>
<td>4,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>82</td>
<td>261</td>
<td>C7412B</td>
<td>46° 14.0'</td>
<td>124° 08.0'</td>
<td>7 Dec 74</td>
<td>17:35</td>
<td>18</td>
<td>4,000</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>263</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 08.5'</td>
<td></td>
<td>17:51</td>
<td>18</td>
<td>4,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>84</td>
<td>269</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>18:26</td>
<td>20</td>
<td>4,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>85</td>
<td>275</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>18:55</td>
<td>21</td>
<td>10,500</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>86</td>
<td>276</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>19:00</td>
<td></td>
<td>5,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>87</td>
<td>277</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>19:05</td>
<td></td>
<td>4,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>88</td>
<td>278</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>19:12</td>
<td></td>
<td>7,900</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>89</td>
<td>279</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>19:16</td>
<td></td>
<td>4,200</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>90</td>
<td>280</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>19:30</td>
<td></td>
<td>4,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>86</td>
<td>281</td>
<td>C7412B</td>
<td>46°14.0'</td>
<td>124°10.0'</td>
<td>7 Dec 74</td>
<td>19:37</td>
<td>26</td>
<td>6,300</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:43</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:47</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:50</td>
<td></td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:55</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:07</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>87</td>
<td>287</td>
<td></td>
<td>46°14.0'</td>
<td>124°10.25'</td>
<td></td>
<td>20:16</td>
<td>40</td>
<td>6,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:21</td>
<td></td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:25</td>
<td></td>
<td>8,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:29</td>
<td></td>
<td>5,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:33</td>
<td></td>
<td>9,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:38</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>88</td>
<td>293</td>
<td></td>
<td>46°14.0'</td>
<td>124°10.75'</td>
<td></td>
<td>20:45</td>
<td>44</td>
<td>6,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:49</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:54</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:02</td>
<td></td>
<td>10,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:08</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:12</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>89</td>
<td>299</td>
<td></td>
<td>46°14.5'</td>
<td>124°10.75'</td>
<td></td>
<td>21:24</td>
<td>40</td>
<td>11,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:28</td>
<td></td>
<td>8,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>89</td>
<td>301</td>
<td>C74128</td>
<td>46° 14.5'</td>
<td>124° 10.75'</td>
<td>7 Dec 75</td>
<td>21:35</td>
<td>40</td>
<td>10,800</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>90</td>
<td>305</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 10.5'</td>
<td>22:04</td>
<td>37</td>
<td>10,800</td>
<td>1.0</td>
<td>silty-sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>91</td>
<td>311</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 10.0'</td>
<td>22:50</td>
<td>33</td>
<td>8,400</td>
<td>1.0</td>
<td>sand over sandy-silt</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>92</td>
<td>317</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 09.0'</td>
<td>23:49</td>
<td>20</td>
<td>5,600</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:53</td>
<td>3</td>
<td>3,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:00</td>
<td>3</td>
<td>3,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:06</td>
<td>3</td>
<td>3,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>92</td>
<td>321</td>
<td>C7412B</td>
<td>46° 14.5'</td>
<td>124° 09.0'</td>
<td>8 Dec 74</td>
<td>00:10</td>
<td>20</td>
<td>1,700</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>93</td>
<td>322</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 08.5'</td>
<td></td>
<td>00:15</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>94</td>
<td>323</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>01:14</td>
<td>16</td>
<td>3,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>95</td>
<td>329</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 11.5'</td>
<td></td>
<td>01:36</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>96</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:24</td>
<td></td>
<td>3,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>97</td>
<td>331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:27</td>
<td></td>
<td>3,600</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>98</td>
<td>332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:30</td>
<td></td>
<td>2,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>99</td>
<td>333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:33</td>
<td></td>
<td>3,400</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>100</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:36</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>101</td>
<td>335</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 11.5'</td>
<td></td>
<td>01:55</td>
<td>47</td>
<td>3,000</td>
<td>silty-sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>102</td>
<td>336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:59</td>
<td></td>
<td>8,800</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>103</td>
<td>337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:04</td>
<td></td>
<td>6,500</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>104</td>
<td>338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:10</td>
<td></td>
<td>8,600</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>105</td>
<td>339</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:24</td>
<td></td>
<td>8,400</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>106</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:31</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>96</td>
<td>341</td>
<td>C7412B</td>
<td>46° 15.0’</td>
<td>124° 14.0’</td>
<td>8 Dec 74</td>
<td>02:47</td>
<td>67</td>
<td>9,300</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:53</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>343</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:01</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:08</td>
<td></td>
<td>8,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:14</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:20</td>
<td></td>
<td></td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>97</td>
<td>347</td>
<td></td>
<td>46° 15.0’</td>
<td>124° 17.0’</td>
<td></td>
<td>03:57</td>
<td>97</td>
<td>11,600</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:12</td>
<td></td>
<td>12,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:19</td>
<td></td>
<td>11,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:31</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:41</td>
<td></td>
<td>11,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:48</td>
<td></td>
<td></td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>98</td>
<td>353</td>
<td></td>
<td>46° 16.0’</td>
<td>124° 17.0’</td>
<td></td>
<td>05:05</td>
<td>86</td>
<td>11,400</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:16</td>
<td></td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:23</td>
<td></td>
<td>11,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:32</td>
<td></td>
<td>11,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:40</td>
<td></td>
<td>9,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:46</td>
<td></td>
<td></td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>99</td>
<td>359</td>
<td></td>
<td>46° 16.0’</td>
<td>124° 14.5’</td>
<td></td>
<td>06:19</td>
<td>68</td>
<td>7,400</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:32</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-H Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>99</td>
<td>361</td>
<td>C7412B</td>
<td>46° 16.0'</td>
<td>124° 14.5'</td>
<td>8 Dec 74</td>
<td>06:40</td>
<td>68</td>
<td>7,400</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>100</td>
<td>365</td>
<td></td>
<td>46° 16.0'</td>
<td>124° 12.0'</td>
<td></td>
<td>07:38</td>
<td>48</td>
<td>6,700</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>101</td>
<td>3/1</td>
<td></td>
<td>46° 16.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>08:59</td>
<td>29</td>
<td>3,600</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>102</td>
<td>377</td>
<td></td>
<td>46° 16.0'</td>
<td>124° 08.0'</td>
<td></td>
<td>09:49</td>
<td>13</td>
<td>3,400</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>102</td>
<td>381</td>
<td>C7412B</td>
<td>46° 16.0'</td>
<td>124° 08.0'</td>
<td>8 Dec 74</td>
<td>09:59</td>
<td>13</td>
<td>4,200</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>103</td>
<td>382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:02</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>103</td>
<td>383</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>10:25</td>
<td>31</td>
<td>2,600</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>103</td>
<td>384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:29</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:33</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:37</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:40</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:47</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>104</td>
<td>389</td>
<td></td>
<td>46° 11.5'</td>
<td>124° 06.5'</td>
<td></td>
<td>11:41</td>
<td>29</td>
<td>5,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:47</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:51</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:55</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:59</td>
<td></td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:04</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:10</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:15</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:19</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:24</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:37</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:33</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>106</td>
<td>405</td>
<td>C7412B</td>
<td>46° 11.5'</td>
<td>124° 06.5'</td>
<td>8 Dec 74</td>
<td>17:37</td>
<td>29</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:41</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:45</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:48</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:52</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:56</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:00</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:04</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:07</td>
<td></td>
<td>--</td>
<td>Sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>108</td>
<td>414</td>
<td>C7501D</td>
<td>46° 03.0'</td>
<td>124° 33.0'</td>
<td>19 Jan 75</td>
<td>23:11</td>
<td>141</td>
<td>13,300</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:28</td>
<td></td>
<td>13,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:37</td>
<td></td>
<td>14,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>417</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 Jan 75</td>
<td>00:01</td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:25</td>
<td></td>
<td>11,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>419</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:36</td>
<td></td>
<td>--</td>
<td>Silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>109</td>
<td>420</td>
<td></td>
<td>46° 06.0'</td>
<td>124° 25.0'</td>
<td></td>
<td>01:15</td>
<td>124</td>
<td>12,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:28</td>
<td></td>
<td>13,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:41</td>
<td></td>
<td>12,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:02</td>
<td></td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:15</td>
<td></td>
<td>12,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-H Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>109</td>
<td>425</td>
<td>C7501D</td>
<td>46° 06.0'</td>
<td>124° 25.0'</td>
<td>20 Jan 75</td>
<td>02:27</td>
<td>124</td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>110</td>
<td>426</td>
<td></td>
<td>46° 06.0'</td>
<td>124° 18.0'</td>
<td>21 Jan 75</td>
<td>03:17</td>
<td>100</td>
<td>10,500</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>427</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:28</td>
<td></td>
<td>11,400</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>428</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:37</td>
<td></td>
<td>9,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:52</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:06</td>
<td></td>
<td>10,000</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:15</td>
<td></td>
<td>10,600</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>111</td>
<td>432</td>
<td></td>
<td>46° 15.55'</td>
<td>124° 05.4'</td>
<td>21 Jan 75</td>
<td>15:28</td>
<td>18</td>
<td>4.600</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:37</td>
<td></td>
<td>3,500</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>434</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:43</td>
<td></td>
<td>5,500</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:02</td>
<td>20</td>
<td>5,100</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:13</td>
<td>18</td>
<td>3,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>437</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:20</td>
<td>20</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>112</td>
<td>438</td>
<td></td>
<td>46° 15.7'</td>
<td>124° 05.0'</td>
<td></td>
<td>16:42</td>
<td></td>
<td>5,500</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>439</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:55</td>
<td></td>
<td>2,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:01</td>
<td></td>
<td>3,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:05</td>
<td></td>
<td>3,500</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:08</td>
<td></td>
<td>5,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:12</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>113</td>
<td>444</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 05.8'</td>
<td></td>
<td>17:47</td>
<td></td>
<td>5,000</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>111</td>
<td>445</td>
<td>C7501D</td>
<td>46° 15.5'</td>
<td>124° 05.8'</td>
<td>21 Jan 75</td>
<td>17:51</td>
<td>20</td>
<td>10,700</td>
<td>-</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>446</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17:58</td>
<td>-</td>
<td>7,500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>447</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:03</td>
<td>-</td>
<td>6,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:07</td>
<td>-</td>
<td>10,500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>449</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:18</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>-</td>
<td>Geological</td>
</tr>
<tr>
<td>114</td>
<td>450</td>
<td>-</td>
<td>46° 15.5'</td>
<td>124° 06.5'</td>
<td>18:30</td>
<td>13</td>
<td>5,500</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>451</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:37</td>
<td>-</td>
<td>4,500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>452</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:43</td>
<td>-</td>
<td>5,500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:48</td>
<td>-</td>
<td>5,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>454</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:50</td>
<td>-</td>
<td>5,500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:56</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>-</td>
<td>Geological</td>
</tr>
<tr>
<td>115</td>
<td>456</td>
<td>-</td>
<td>46° 15.5'</td>
<td>124° 07.5'</td>
<td>19:12</td>
<td>-</td>
<td>6,200</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>457</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:19</td>
<td>-</td>
<td>3,900</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>458</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:25</td>
<td>-</td>
<td>3,600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>459</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:27</td>
<td>-</td>
<td>5,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:56</td>
<td>-</td>
<td>4,300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:59</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>-</td>
<td>Geological</td>
</tr>
<tr>
<td>116</td>
<td>462</td>
<td>-</td>
<td>46° 15.2'</td>
<td>124° 09.4'</td>
<td>20:19</td>
<td>16</td>
<td>4,500</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>463</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:22</td>
<td>-</td>
<td>3,600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:30</td>
<td>-</td>
<td>4,900</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Screen Size (mm)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Bottom Depth (m)</td>
<td>Date Time</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>1.0</td>
<td>4,000</td>
<td>Sand</td>
<td>20:36</td>
<td>16</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>1.0</td>
<td>6,300</td>
<td>Sand</td>
<td>20:40</td>
<td>16</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>1.0</td>
<td>7,200</td>
<td>Sand</td>
<td>20:55</td>
<td>31</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>1.0</td>
<td>5,800</td>
<td>Sand</td>
<td>21:05</td>
<td>31</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.0</td>
<td>5,600</td>
<td>Sand</td>
<td>21:10</td>
<td>31</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>1.0</td>
<td>6,300</td>
<td>Sand</td>
<td>21:15</td>
<td>31</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>1.0</td>
<td>4,500</td>
<td>Sand</td>
<td>21:20</td>
<td>31</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>1.0</td>
<td>7,500</td>
<td>Sand</td>
<td>21:25</td>
<td>31</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geological Data

- **S-N Sedkefe Screen**
- **Station GKd Cruise sota Depth**
- **VolW sedirent Site**
- **m. no. No.**
- **Latitude I.angitude**
- **Date Ti# w (=I**
- **Counts**
- **Cooants**
- **116 465 C7501D 46° 15.2' 124° 09.4' 21 Jan 75 20:33**
- **46° 14.25' 124° 10.66'**
- **20:40**
- **16**
- **sand**
- **1.0**
- **Geological**
- **117 466**
- **46° 19.25' 124° 09.66'**
- **20:55**
- **31**
- **sand**
- **1.0**
- **Geological**
- **118 467**
- **46° 13.3' 124° 09.9'**
- **21:05**
- **37**
- **6,200**
- **10,300**
- **6,300**
- **sand**
- **1.0**
- **Geological**
- **119 468**
- **46° 13.7' 124° 08.71'**
- **21:10**
- **18**
- **6,100**
- **4,200**
- **4,800**
- **4,300**
- **Geological**
- **120 469**
- **46° 13.9' 124° 08.91'**
- **21:15**
- **18**
- **6,100**
- **4,200**
- **4,800**
- **4,300**
- **Geological**

Additional Data

- **Station No.**
- **Cruise No.**
- **Latitude**
- **Longitude**
- **Date**
- **Time**
- **Remarks**
<table>
<thead>
<tr>
<th>Station No.</th>
<th>S-M Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>485</td>
<td>C7501D</td>
<td>46° 13.7'</td>
<td>124° 08.1'</td>
<td>21 Jan 75</td>
<td>23:27</td>
<td>18</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>120</td>
<td>486</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>23:46</td>
<td>40</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>487</td>
<td>--</td>
<td>46° 12.5'</td>
<td>124° 06.5'</td>
<td>22 Jan 75</td>
<td>00:04</td>
<td>6,700</td>
<td>--</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>122</td>
<td>488</td>
<td></td>
<td>46° 11.5'</td>
<td>124° 06.5'</td>
<td>22 Jan 75</td>
<td>00:11</td>
<td>4,500</td>
<td>--</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>123</td>
<td>489</td>
<td></td>
<td>46° 11.0'</td>
<td>124° 05.0'</td>
<td>22 Jan 75</td>
<td>00:16</td>
<td>6,700</td>
<td>--</td>
<td></td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>123</td>
<td>505</td>
<td>C7501D</td>
<td>46° 11.0'</td>
<td>124° 05.0'</td>
<td>22 Jan 75</td>
<td>02:23</td>
<td>26</td>
<td>3,800</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>123</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>02:32</td>
<td>*</td>
<td>3,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>02:34</td>
<td>*</td>
<td>3,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>02:39</td>
<td>*</td>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>02:42</td>
<td>*</td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>124</td>
<td>510</td>
<td></td>
<td>46° 12.75'</td>
<td>124° 06.0'</td>
<td>*</td>
<td>03:01</td>
<td>20</td>
<td>3,800</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>124</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:06</td>
<td>*</td>
<td>3,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:14</td>
<td>*</td>
<td>3,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:17</td>
<td>*</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:25</td>
<td>*</td>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:29</td>
<td>*</td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>125</td>
<td>516</td>
<td></td>
<td>46° 12.5'</td>
<td>124° 07.0'</td>
<td>*</td>
<td>03:41</td>
<td>26</td>
<td>4,200</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:48</td>
<td>*</td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:50</td>
<td>*</td>
<td>6,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>03:55</td>
<td>27</td>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>04:04</td>
<td>*</td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>04:09</td>
<td>*</td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>126</td>
<td>522</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 11.0'</td>
<td>*</td>
<td>04:55</td>
<td>40</td>
<td>6,400</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>126</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>04:59</td>
<td>*</td>
<td>5,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>05:04</td>
<td>*</td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Sediment Type</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Depth (m)</td>
<td>Bottom Depth (m)</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Cruise No.</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>sand</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>126.11.0</td>
<td>124.10.5</td>
<td>C7501D</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>sand</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>126.11.0</td>
<td>124.10.5</td>
<td>C7501D</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>sand</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>126.11.0</td>
<td>124.10.5</td>
<td>C7501D</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>sand</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>126.11.0</td>
<td>124.10.5</td>
<td>C7501D</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data:
- Station No.: 126, 127, 128, 129
- Sediment Type: sand
- Sediment Volume: 1.0 cc
- Sediment Depth: 1.0 m
- Bottom Depth: 1.0 m
- Latitude: 126.11.0
- Longitude: 124.10.5
- Cruise No.: C7501D
- Comments: Geological
<table>
<thead>
<tr>
<th>Station No.</th>
<th>S-N Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>545</td>
<td>C7501D</td>
<td>46° 15.0’</td>
<td>124° 09.5’</td>
<td>22 Jan 73</td>
<td>07:04</td>
<td>19</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>130</td>
<td>546</td>
<td>"</td>
<td>46° 15.0’</td>
<td>124° 09.0’</td>
<td>"</td>
<td>07:14</td>
<td>17</td>
<td>6,700</td>
<td>"</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>547</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>07:18</td>
<td>"</td>
<td>5,700</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>548</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>07:23</td>
<td>"</td>
<td>6,700</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>549</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>07:29</td>
<td>"</td>
<td>8,700</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>550</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>07:32</td>
<td>"</td>
<td>6,600</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>551</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>07:37</td>
<td>"</td>
<td>--</td>
<td>sand</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>131</td>
<td>552</td>
<td>"</td>
<td>46° 15.0’</td>
<td>124° 08.5’</td>
<td>"</td>
<td>08:28</td>
<td>15</td>
<td>5,400</td>
<td>"</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>553</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>08:37</td>
<td>"</td>
<td>4,600</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>554</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:14</td>
<td>"</td>
<td>5,900</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>555</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:19</td>
<td>"</td>
<td>4,200</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>556</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:25</td>
<td>"</td>
<td>6,700</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>557</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:31</td>
<td>"</td>
<td>--</td>
<td>sand</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>132</td>
<td>558</td>
<td>"</td>
<td>46° 15.5’</td>
<td>124° 08.5’</td>
<td>"</td>
<td>09:41</td>
<td>15</td>
<td>4,700</td>
<td>"</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>559</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:44</td>
<td>"</td>
<td>5,000</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>560</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:47</td>
<td>"</td>
<td>5,000</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>561</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:49</td>
<td>"</td>
<td>6,900</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>562</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:51</td>
<td>"</td>
<td>6,300</td>
<td>"</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>563</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>09:54</td>
<td>"</td>
<td>--</td>
<td>sand</td>
<td>"</td>
<td>Geological</td>
</tr>
<tr>
<td>133</td>
<td>564</td>
<td>"</td>
<td>46° 15.5’</td>
<td>124° 09.0’</td>
<td>"</td>
<td>10:04</td>
<td>15</td>
<td>6,400</td>
<td>"</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>133</td>
<td>565</td>
<td>C7501D</td>
<td>46° 15.5'</td>
<td>124° 09.0'</td>
<td>22 Jan 75</td>
<td>10:07</td>
<td>15</td>
<td>5,900</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>566</td>
<td>566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:10</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>567</td>
<td>567</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:12</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>568</td>
<td>568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:15</td>
<td></td>
<td>5,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>569</td>
<td>569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:18</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>134</td>
<td>570</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 09.5'</td>
<td></td>
<td>10:31</td>
<td>17</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>571</td>
<td>571</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:32</td>
<td></td>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>572</td>
<td>572</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:36</td>
<td></td>
<td>5,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>573</td>
<td>573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:38</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>574</td>
<td>574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:40</td>
<td></td>
<td>5,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>575</td>
<td>575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:43</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>135</td>
<td>576</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 10.0'</td>
<td></td>
<td>10:52</td>
<td>22</td>
<td>3,900</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>577</td>
<td>577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:54</td>
<td></td>
<td>3,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>578</td>
<td>578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:56</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>579</td>
<td>579</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:59</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:01</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>581</td>
<td>581</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:04</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>136</td>
<td>582</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 10.5'</td>
<td></td>
<td>11:23</td>
<td>31</td>
<td>3,700</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>583</td>
<td>583</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:26</td>
<td></td>
<td>4,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>584</td>
<td>584</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:30</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>136</td>
<td>585</td>
<td>C7501D</td>
<td>46° 15.5'</td>
<td>124° 10.5'</td>
<td>22 Jan 75</td>
<td>11:32</td>
<td>31</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>586</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:35</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:37</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>137</td>
<td>588</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 11.0'</td>
<td></td>
<td>11:47</td>
<td>37</td>
<td>8,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>138</td>
<td>594</td>
<td></td>
<td>46° 20.0'</td>
<td>124° 31.0'</td>
<td></td>
<td>15:02</td>
<td>132</td>
<td>10,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:14</td>
<td></td>
<td>10,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:22</td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>597</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:33</td>
<td></td>
<td>11,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:43</td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:54</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>139</td>
<td>600</td>
<td></td>
<td>40° 20.0'</td>
<td>124° 25.0'</td>
<td></td>
<td>16:34</td>
<td>128</td>
<td>10,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>601</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:51</td>
<td></td>
<td>14,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:04</td>
<td></td>
<td>14,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:29</td>
<td></td>
<td>14,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:41</td>
<td></td>
<td>14,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>139</td>
<td>605</td>
<td>C7501D</td>
<td>46° 20.0'</td>
<td>124° 25.0'</td>
<td>22 Jan 75</td>
<td>17:54</td>
<td>128</td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>140</td>
<td>606</td>
<td></td>
<td>46° 20.0'</td>
<td>124° 15.0'</td>
<td></td>
<td>18:54</td>
<td>64</td>
<td>10,800</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>141</td>
<td>612</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 10.0'</td>
<td>24 Jan 75</td>
<td>09:19</td>
<td>33</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>142</td>
<td>618</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 12.0'</td>
<td></td>
<td>10:05</td>
<td>44</td>
<td>1,700</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>143</td>
<td>624</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 14.5'</td>
<td></td>
<td>11:07</td>
<td>66</td>
<td>7,900U</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>143</td>
<td>625</td>
<td>C7501D</td>
<td>46° 17.0'</td>
<td>124° 14.5'</td>
<td>24 Jan 75</td>
<td>11:14</td>
<td>66</td>
<td>4,300</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:20</td>
<td></td>
<td>10,000</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:27</td>
<td></td>
<td>0,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:33</td>
<td></td>
<td>10,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:48</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>144</td>
<td>630</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 17.0'</td>
<td></td>
<td>12:16</td>
<td>80</td>
<td>10,300</td>
<td>silty-sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:23</td>
<td></td>
<td>10,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:34</td>
<td></td>
<td>11,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:42</td>
<td></td>
<td>10,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:51</td>
<td></td>
<td>10,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>635</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:00</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>145</td>
<td>636</td>
<td></td>
<td>46° 18.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>14:16</td>
<td>29</td>
<td>3,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:20</td>
<td></td>
<td>2,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:23</td>
<td></td>
<td>2,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>639</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:31</td>
<td></td>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:35</td>
<td></td>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:38</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>146</td>
<td>642</td>
<td></td>
<td>46° 18.0'</td>
<td>124° 12.0'</td>
<td></td>
<td>14:54</td>
<td>40</td>
<td>3,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>643</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:00</td>
<td></td>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>644</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:04</td>
<td></td>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>146</td>
<td>645</td>
<td>C7501D</td>
<td>46° 18.0'</td>
<td>124° 12.0'</td>
<td>24 Jan 75</td>
<td>15:09</td>
<td>40</td>
<td>4,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>646</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:13</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:18</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>147</td>
<td>648</td>
<td></td>
<td>46° 18.0'</td>
<td>124° 14.5'</td>
<td></td>
<td>15:49</td>
<td>60</td>
<td>7,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>649</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:04</td>
<td></td>
<td>7,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:11</td>
<td></td>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>651</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:17</td>
<td></td>
<td>7,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>652</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:23</td>
<td></td>
<td>7,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>653</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:29</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>148</td>
<td>654</td>
<td></td>
<td>46° 18.0'</td>
<td>124° 17.0'</td>
<td></td>
<td>16:48</td>
<td>75</td>
<td>7,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>655</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:55</td>
<td></td>
<td>9,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:03</td>
<td></td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>657</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:09</td>
<td></td>
<td>9,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:16</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:42</td>
<td></td>
<td>9,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>660</td>
<td></td>
<td>46° 19.0'</td>
<td>124° 18.0'</td>
<td></td>
<td>18:16</td>
<td>84</td>
<td>12,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>661</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:29</td>
<td></td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>662</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:38</td>
<td></td>
<td>11,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:47</td>
<td></td>
<td>14,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:03</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:10</td>
<td></td>
<td>11,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>150</td>
<td>666</td>
<td>C7501D</td>
<td>46° 19.0'</td>
<td>124° 15.0'</td>
<td>24 Jan 75</td>
<td>19:41</td>
<td>64</td>
<td>7,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:47</td>
<td></td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:51</td>
<td></td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:56</td>
<td></td>
<td>8,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:02</td>
<td></td>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:08</td>
<td></td>
<td>--</td>
<td></td>
<td>?</td>
<td>Geological</td>
</tr>
<tr>
<td>151</td>
<td>672</td>
<td></td>
<td>46° 19.0'</td>
<td>124° 12.0'</td>
<td></td>
<td>20:30</td>
<td>40</td>
<td>5,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>673</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:34</td>
<td></td>
<td>3,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>674</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:38</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:41</td>
<td></td>
<td>3,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:45</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>677</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:49</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>152</td>
<td>678</td>
<td></td>
<td>46° 19.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>21:02</td>
<td>29</td>
<td>3,100</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:06</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:09</td>
<td></td>
<td>3,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>681</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:12</td>
<td></td>
<td>2,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>682</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:26</td>
<td></td>
<td>4,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>683</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:28</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>153</td>
<td>684</td>
<td></td>
<td>46° 20.0'</td>
<td>124° 08.0'</td>
<td></td>
<td>21:49</td>
<td>22</td>
<td>2,700</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:51</td>
<td></td>
<td>2,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Depth (m)</td>
<td>Sediment Size (mm)</td>
<td>Sediment Type</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>C7501D</td>
<td>46° 20.0'</td>
<td>124° 08.0'</td>
<td>22</td>
<td>1.0</td>
<td>-- sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>698</td>
<td>46° 20.0'</td>
<td>124° 08.0'</td>
<td>29</td>
<td>4,600</td>
<td>-- sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>699</td>
<td>46° 20.0'</td>
<td>124° 10.0'</td>
<td>35</td>
<td>4,700</td>
<td>-- sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>700</td>
<td>46° 20.0'</td>
<td>124° 12.0'</td>
<td>48</td>
<td>4,300</td>
<td>-- sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Sediment Size (mm): 1.0
- Sediment Type: sand
- Remarks: Geological

Note: The table contains information about station numbers, cruise numbers, latitudes, longitudes, depths, sediment sizes, sediment types, and remarks. The data is organized in a tabular format with columns for each of these categories.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>S-M Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>706</td>
<td>C7501D</td>
<td>46° 20.0'</td>
<td>124° 13.0'</td>
<td>25 Jan 75</td>
<td>00:02</td>
<td>48</td>
<td>4,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>157</td>
<td>707</td>
<td></td>
<td>46° 20.0'</td>
<td>124° 18.0'</td>
<td></td>
<td>00:10</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>708</td>
<td></td>
<td>46° 15.45</td>
<td>124° 05.6'</td>
<td>19 Apr 75</td>
<td>09:26</td>
<td>18</td>
<td>6,200</td>
<td>silty-sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>159</td>
<td>709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:44</td>
<td></td>
<td>4,000</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:53</td>
<td></td>
<td>5,600</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>711</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:59</td>
<td></td>
<td>5,100</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:06</td>
<td></td>
<td>5,600</td>
<td>sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:10</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>727</td>
<td>C7504B</td>
<td>46° 09.0'</td>
<td>124° 14.0'</td>
<td></td>
<td>11:41</td>
<td>86</td>
<td>10,700</td>
<td>sandy-silt</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:49</td>
<td></td>
<td>9,700</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:57</td>
<td></td>
<td>12,200</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:17</td>
<td></td>
<td>11,400</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>731</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:26</td>
<td></td>
<td>11,000</td>
<td>--</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>732</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:35</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>733</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:49</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>734</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:57</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:17</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:26</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:35</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>738</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:49</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>739</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:57</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>160</td>
<td>741</td>
<td>C7504B</td>
<td>46° 09.0'</td>
<td>124° 10.5'</td>
<td>20 Apr 75</td>
<td>13:11</td>
<td>66</td>
<td>4,700</td>
<td>silty-sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:18</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>743</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:25</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:33</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:42</td>
<td></td>
<td>5,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>746</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:49</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>161</td>
<td>748</td>
<td></td>
<td>46° 09.0'</td>
<td>124° 07.5'</td>
<td>14:16</td>
<td>45</td>
<td>6,100</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>749</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:27</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:35</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:42</td>
<td></td>
<td>6,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:49</td>
<td></td>
<td>4,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>753</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:56</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>162</td>
<td>755</td>
<td></td>
<td>46° 09.0'</td>
<td>124° 04.5'</td>
<td>15:25</td>
<td>29</td>
<td>4,000</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>756</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:35</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:41</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>758</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:46</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>759</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:52</td>
<td></td>
<td>3,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:55</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>163</td>
<td>762</td>
<td></td>
<td>46° 09.0'</td>
<td>124° 00.5'</td>
<td>17:14</td>
<td>17</td>
<td>5,500</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:19</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Sediment Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>163</td>
<td>764</td>
<td>C7504B</td>
<td>46° 09.0'</td>
<td>124° 00.5'</td>
<td>20 Apr 75</td>
<td>17:23</td>
<td>17</td>
<td>4,700</td>
<td>--</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:28</td>
<td></td>
<td>3,700</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:33</td>
<td></td>
<td>5,500</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>767</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:38</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>164</td>
<td>769</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 02.5'</td>
<td></td>
<td>18:22</td>
<td>17</td>
<td>4,800</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:26</td>
<td></td>
<td>4,900</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:35</td>
<td></td>
<td>4,800</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:41</td>
<td></td>
<td>4,700</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:52</td>
<td></td>
<td>5,200</td>
<td>0.5</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>774</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:00</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>776</td>
<td></td>
<td>46° 11.0'</td>
<td>124° 05.0'</td>
<td></td>
<td>19:33</td>
<td>26</td>
<td>5,600</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>777</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:00</td>
<td></td>
<td>3,100</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:06</td>
<td></td>
<td>4,400</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>779</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:14</td>
<td></td>
<td>3,900</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:22</td>
<td></td>
<td>4,800</td>
<td>0.5</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>781</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:27</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>783</td>
<td></td>
<td>46° 11.7'</td>
<td>124° 06.3'</td>
<td></td>
<td>21:51</td>
<td>31</td>
<td>4,600</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>784</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:06</td>
<td></td>
<td>4,700</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>785</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:15</td>
<td></td>
<td>5,000</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>786</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:22</td>
<td></td>
<td>6,200</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>166</td>
<td>787</td>
<td>C7504B</td>
<td>46° 11.7'</td>
<td>124° 06.3'</td>
<td>20 Apr 75</td>
<td>22:29</td>
<td>31</td>
<td>4,700</td>
<td>sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>167</td>
<td>790</td>
<td></td>
<td>46° 12.5'</td>
<td>124° 06.5'</td>
<td>21 Apr 75</td>
<td>00:27</td>
<td>22</td>
<td>5,300</td>
<td>--</td>
<td>1.0</td>
<td>--</td>
</tr>
<tr>
<td>168</td>
<td>797</td>
<td></td>
<td>46° 18.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>02:12</td>
<td>27</td>
<td>4,300</td>
<td>--</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>169</td>
<td>804</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 12.0'</td>
<td></td>
<td>03:15</td>
<td>42</td>
<td>6,000</td>
<td>silty-sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>170</td>
<td>811</td>
<td>C7504B</td>
<td>46° 17.0'</td>
<td>124° 14.5'</td>
<td>21 Apr 75</td>
<td>04:15</td>
<td>57</td>
<td>8,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>812</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:22</td>
<td></td>
<td>9,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:36</td>
<td></td>
<td>9,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:43</td>
<td></td>
<td>9,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:54</td>
<td></td>
<td>10,700</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:03</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>171</td>
<td>818</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 17.0'</td>
<td></td>
<td>05:37</td>
<td>82</td>
<td>11,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:44</td>
<td></td>
<td>12,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:51</td>
<td></td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:58</td>
<td></td>
<td>11,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:18</td>
<td></td>
<td>10,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:28</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>172</td>
<td>825</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 16.0'</td>
<td></td>
<td>08:08</td>
<td>83</td>
<td>7,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>826</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:32</td>
<td>81</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>827</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:40</td>
<td></td>
<td>9,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:47</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:55</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:03</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>173</td>
<td>832</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 07.5'</td>
<td></td>
<td>10:08</td>
<td>11</td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:10</td>
<td></td>
<td>3,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>173</td>
<td>834</td>
<td>C75048</td>
<td>46° 15.5'</td>
<td>124° 07.5'</td>
<td>21 Apr 75</td>
<td>10:13</td>
<td>11</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:15</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:21</td>
<td></td>
<td>5,200</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>837</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:24</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>174</td>
<td>839</td>
<td></td>
<td>46° 15.2'</td>
<td>124° 09.4'</td>
<td>10:46</td>
<td>15</td>
<td></td>
<td>5,400</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:50</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:53</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:57</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>843</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:00</td>
<td></td>
<td>7,200</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>844</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:04</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>175</td>
<td>846</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 10.5'</td>
<td>11:22</td>
<td>31</td>
<td></td>
<td>4,000</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:26</td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>848</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:31</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>849</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:37</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:42</td>
<td></td>
<td>4,700</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>851</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:46</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>176</td>
<td>853</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 10.5'</td>
<td>12:27</td>
<td>33</td>
<td></td>
<td>12,700</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>854</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:38</td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>855</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:44</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:49</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>857</td>
<td>C7504B</td>
<td>46° 14.5'</td>
<td>124° 10.5'</td>
<td>21 Apr 75</td>
<td>12:56</td>
<td>33</td>
<td>4,700</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:02</td>
<td>--</td>
<td>silty-sand</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>860</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 10.0'</td>
<td></td>
<td>13:44</td>
<td>26</td>
<td>3,000</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>861</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:56</td>
<td>3,500</td>
<td>0.5 sample lost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>862</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:00</td>
<td>4,000</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>863</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:01</td>
<td>4,000</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>864</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:12</td>
<td>4,300</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:15</td>
<td>4,500</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:23</td>
<td>4,300</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>867</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:36</td>
<td>5,500</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>868</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 09.5'</td>
<td></td>
<td>15:40</td>
<td>4,700</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>869</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:46</td>
<td>4,000</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:51</td>
<td>3,500</td>
<td>0.5 sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>871</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:57</td>
<td>4,000</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:40</td>
<td>3,500</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:44</td>
<td>4,700</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:46</td>
<td>4,000</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>875</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>16:50</td>
<td>4,700</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>876</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:53</td>
<td>4,000</td>
<td>0.5 sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>877</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:56</td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>878</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:56</td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>879</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:56</td>
<td>--</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geological samples were collected at 110% intervals of the expected depth. Thus, depths may vary slightly from those shown.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>S-M Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>882</td>
<td>C7504B</td>
<td>46° 14.0'</td>
<td>124° 08.0'</td>
<td>21 Apr 75</td>
<td>17:15</td>
<td>15</td>
<td>5,200</td>
<td>sand</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>883</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:18</td>
<td>------</td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:21</td>
<td>------</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:25</td>
<td>------</td>
<td>4,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:30</td>
<td>------</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>887</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:37</td>
<td>------</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>181</td>
<td>889</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>17:58</td>
<td>31</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:03</td>
<td>------</td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:12</td>
<td>------</td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:16</td>
<td>------</td>
<td>4,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:20</td>
<td>------</td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:25</td>
<td>------</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>182</td>
<td>896</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>18:48</td>
<td>42</td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>897</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:01</td>
<td>------</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>898</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:05</td>
<td>------</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>899</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:13</td>
<td>------</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:17</td>
<td>------</td>
<td>10,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:22</td>
<td>------</td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>183</td>
<td>903</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>20:07</td>
<td>40</td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:11</td>
<td>------</td>
<td>5,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>183</td>
<td>905</td>
<td>C7504B</td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td>21 Apr 75</td>
<td>20:15</td>
<td>40</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:30</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:34</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>908</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:40</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>184</td>
<td>928</td>
<td>C7506C</td>
<td>46° 15.45'</td>
<td>124° 05.6'</td>
<td>23 Jun 75</td>
<td>09:43</td>
<td>17</td>
<td>7,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:49</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:57</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:09</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>932</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:15</td>
<td></td>
<td>6,600</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:42</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>185</td>
<td>935</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 07.5'</td>
<td></td>
<td>11:09</td>
<td>11</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:13</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:22</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:27</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>939</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:33</td>
<td></td>
<td>6,200</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:47</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>186</td>
<td>942</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 08.0'</td>
<td></td>
<td>12:06</td>
<td>17</td>
<td>7,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:18</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:35</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:41</td>
<td></td>
<td>10,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>186</td>
<td>946</td>
<td>C7506C</td>
<td>46° 14.0'</td>
<td>124° 08.0'</td>
<td>23 Jun 75</td>
<td>12:53</td>
<td>17</td>
<td>9,100</td>
<td>silty-sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>187</td>
<td>948</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.0'</td>
<td></td>
<td>13:18</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>188</td>
<td>950</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>13:36</td>
<td></td>
<td>11,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>952</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>13:44</td>
<td></td>
<td>10,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>954</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>13:55</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>955</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>14:00</td>
<td></td>
<td>11,000</td>
<td>silty-sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>189</td>
<td>957</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>14:59</td>
<td>44</td>
<td>11,400</td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>958</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>15:10</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>959</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>15:18</td>
<td></td>
<td>9,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>960</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>15:23</td>
<td></td>
<td>13,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>961</td>
<td></td>
<td>46° 13.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>15:32</td>
<td></td>
<td>10,900</td>
<td>silty-sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>189</td>
<td>962</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>15:44</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>189</td>
<td>963</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>16:36</td>
<td>22</td>
<td>14,200</td>
<td>silty-sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>964</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>16:43</td>
<td></td>
<td>13,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>965</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>16:55</td>
<td></td>
<td>14,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>966</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>17:01</td>
<td></td>
<td>14,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>967</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>17:05</td>
<td></td>
<td>13,800</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>969</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 09.5'</td>
<td></td>
<td>17:37</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>190</td>
<td>970</td>
<td>C7506C</td>
<td>46° 14.0'</td>
<td>124° 09.0'</td>
<td>23 Jun 75</td>
<td>18:18</td>
<td>20</td>
<td>14,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>185</td>
<td>976</td>
<td></td>
<td>46° 15.5'</td>
<td>124° 07.5'</td>
<td>19:46</td>
<td>11</td>
<td>5,200</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>191</td>
<td>977</td>
<td></td>
<td>46° 15.35'</td>
<td>124° 09.4'</td>
<td>20:06</td>
<td>15</td>
<td>4,700</td>
<td>4,700</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>192</td>
<td>984</td>
<td></td>
<td>46° 15.0'</td>
<td>124° 10.5'</td>
<td>20:52</td>
<td>31</td>
<td>14,600</td>
<td>14,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>193</td>
<td>991</td>
<td></td>
<td>46° 14.52'</td>
<td>124° 10.5'</td>
<td>22:09</td>
<td>33</td>
<td>14,600</td>
<td>14,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>193</td>
<td>992</td>
<td>C7506C</td>
<td>46° 14.52'</td>
<td>124° 10.5'</td>
<td>23 Jun 75</td>
<td>22:20</td>
<td>33</td>
<td>14,600</td>
<td>1.0</td>
<td>--</td>
<td>sand</td>
</tr>
<tr>
<td>194</td>
<td>997</td>
<td></td>
<td>46° 14.5'</td>
<td>124° 10.0'</td>
<td>23:40</td>
<td>26</td>
<td>12,900</td>
<td>14,600</td>
<td>1.0</td>
<td>--</td>
<td>sand</td>
</tr>
<tr>
<td>195</td>
<td>1004</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td>01:15</td>
<td>44</td>
<td>4,000</td>
<td>4,700</td>
<td>1.0</td>
<td>--</td>
<td>sand</td>
</tr>
<tr>
<td>196</td>
<td>1011</td>
<td></td>
<td>46° 12.5'</td>
<td>124° 06.5'</td>
<td>03:05</td>
<td>24</td>
<td>5,700</td>
<td>4,900</td>
<td>1.0</td>
<td>--</td>
<td>sand</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>196</td>
<td>1014</td>
<td>C7506C</td>
<td>46° 12.5'</td>
<td>124° 06.5'</td>
<td>24 Jun</td>
<td>03:32</td>
<td>24</td>
<td>4,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:52</td>
<td></td>
<td>6,200</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:08</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>197</td>
<td>1018</td>
<td></td>
<td>46° 11.7'</td>
<td>124° 06.3'</td>
<td></td>
<td>04:31</td>
<td>29</td>
<td>6,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:47</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:00</td>
<td></td>
<td>8,700</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:07</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:13</td>
<td></td>
<td>6,000</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:32</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>198</td>
<td>1025</td>
<td></td>
<td>46° 11.7'</td>
<td>124° 06.0'</td>
<td></td>
<td>06:36</td>
<td>24</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:41</td>
<td></td>
<td>4,500</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:46</td>
<td></td>
<td>4,900</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:49</td>
<td></td>
<td>4,900</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:53</td>
<td></td>
<td>4,700</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:04</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>199</td>
<td>1032</td>
<td></td>
<td>46° 11.5'</td>
<td>124° 06.0'</td>
<td></td>
<td>07:15</td>
<td>26</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:18</td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:23</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:59</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:02</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:16</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>200</td>
<td>1039</td>
<td>C7506C</td>
<td>46° 11.25'</td>
<td>124° 06.0'</td>
<td>24 Jun 75</td>
<td>08:26</td>
<td>26</td>
<td>6,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:41</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:42</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:46</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:52</td>
<td></td>
<td>5,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:00</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>201</td>
<td>1046</td>
<td></td>
<td>46° 11.5'</td>
<td>124° 05.5'</td>
<td></td>
<td>09:15</td>
<td>24</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:19</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:23</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:28</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:34</td>
<td></td>
<td>6,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:46</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>202</td>
<td>1053</td>
<td></td>
<td>46° 11.0'</td>
<td>124° 05.0'</td>
<td></td>
<td>09:55</td>
<td></td>
<td>4,300</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:59</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:02</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:06</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:09</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:25</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>203</td>
<td>1060</td>
<td></td>
<td>46° 12.0'</td>
<td>124° 02.5'</td>
<td></td>
<td>10:50</td>
<td>15</td>
<td>6,000</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td></td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:53</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>1062-1062C</td>
<td>46°12.0'</td>
<td>124°02.0'</td>
<td>11:00</td>
<td>5.200</td>
<td>4.700</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>1066</td>
<td>46°10.0'</td>
<td>124°04.0'</td>
<td>11:33</td>
<td>11.35</td>
<td>6.100</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>1068</td>
<td>46°09.0'</td>
<td>124°03.5'</td>
<td>11:55</td>
<td>11:52</td>
<td>4.700</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>1073</td>
<td>46°09.0'</td>
<td>124°03.6'</td>
<td>12:06</td>
<td>12:00</td>
<td>3.900</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>1074</td>
<td>46°10.0'</td>
<td>124°05.0'</td>
<td>13:34</td>
<td>13:45</td>
<td>4.300</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>1075</td>
<td>46°10.0'</td>
<td>124°05.1'</td>
<td>14:00</td>
<td>14:02</td>
<td>4.100</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>1076</td>
<td>46°10.0'</td>
<td>124°05.2'</td>
<td>15:10</td>
<td>15:11</td>
<td>5.500</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>1077</td>
<td>46°10.0'</td>
<td>124°05.3'</td>
<td>16:00</td>
<td>16:02</td>
<td>2.700</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>1078</td>
<td>46°10.0'</td>
<td>124°05.4'</td>
<td>17:00</td>
<td>17:02</td>
<td>4.700</td>
<td>sand</td>
<td>Geological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>206</td>
<td>1085</td>
<td>C7506C</td>
<td>46° 09.0'</td>
<td>124° 00.5'</td>
<td>24 Jun 75</td>
<td>15:15</td>
<td>18</td>
<td>5,200</td>
<td>sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>207</td>
<td>1087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:26</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>1088</td>
<td></td>
<td>46° 09.0'</td>
<td>124° 04.5'</td>
<td></td>
<td>16:04</td>
<td>35</td>
<td>5,000</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>209</td>
<td>1095</td>
<td></td>
<td>46° 09.0'</td>
<td>124° 07.5'</td>
<td></td>
<td>16:57</td>
<td>53</td>
<td>4,700</td>
<td>1.0</td>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>1096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:02</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>1097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:07</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>1098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:12</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>1099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:19</td>
<td></td>
<td>6,200</td>
<td>0.5</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>214</td>
<td>1101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:33</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>215</td>
<td>1102</td>
<td></td>
<td>46° 09.0'</td>
<td>124° 10.5'</td>
<td></td>
<td>18:10</td>
<td>70</td>
<td>5,500</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>1103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:16</td>
<td></td>
<td>7,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>1104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:22</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>1105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:25</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>1106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:31</td>
<td></td>
<td>6,600</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>1108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:47</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>210</td>
<td>1109</td>
<td>C7506C</td>
<td>46° 09.0'</td>
<td>124° 14.0'</td>
<td>24 Jun 75</td>
<td>21:11</td>
<td>88</td>
<td>10,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:20</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:27</td>
<td></td>
<td>11,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:32</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:39</td>
<td></td>
<td>12,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:54</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>211</td>
<td>1116</td>
<td></td>
<td>46° 14.0'</td>
<td>124° 16.0'</td>
<td></td>
<td>22:50</td>
<td>86</td>
<td>12,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:59</td>
<td></td>
<td>11,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:06</td>
<td></td>
<td>11,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:14</td>
<td></td>
<td>10,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:23</td>
<td></td>
<td>11,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:41</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>212</td>
<td>1123</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 17.0'</td>
<td>25 Jun 75</td>
<td>00:16</td>
<td>84</td>
<td>11,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:24</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:31</td>
<td></td>
<td>11,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:38</td>
<td></td>
<td>11,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:46</td>
<td></td>
<td>12,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:03</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td>--</td>
<td>Geological</td>
</tr>
<tr>
<td>213</td>
<td>1130</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 14.5'</td>
<td></td>
<td>01:47</td>
<td>66</td>
<td>8,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:53</td>
<td></td>
<td>9,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>213</td>
<td>1132</td>
<td>C7506C</td>
<td>46° 17.0'</td>
<td>124° 14.5'</td>
<td>25 Jun 75</td>
<td>02:00</td>
<td>66</td>
<td>10,800</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:11</td>
<td></td>
<td>9,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:18</td>
<td></td>
<td>11,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:35</td>
<td></td>
<td></td>
<td>sandy-silt</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>214</td>
<td>1137</td>
<td></td>
<td>46° 17.0'</td>
<td>124° 12.0'</td>
<td></td>
<td>03:00</td>
<td>45</td>
<td>9,200</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:08</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:14</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:19</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:24</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:42</td>
<td></td>
<td></td>
<td>silty-sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>215</td>
<td>1144</td>
<td></td>
<td>46° 18.0'</td>
<td>124° 10.0'</td>
<td></td>
<td>04:10</td>
<td>31</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:14</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:20</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:26</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:35</td>
<td></td>
<td>3,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:53</td>
<td></td>
<td></td>
<td>sand</td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>216</td>
<td>1173</td>
<td></td>
<td>46° 14.9'</td>
<td>124° 04.95'</td>
<td>26 Jun 75</td>
<td>22:33</td>
<td>14</td>
<td>7,600</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:36</td>
<td></td>
<td>9,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:39</td>
<td></td>
<td>6,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:44</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-H Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1177</td>
<td>C7506C</td>
<td></td>
<td>46° 14.9'</td>
<td>124° 04.95'</td>
<td>26 Jun 75</td>
<td>22:48</td>
<td>14</td>
<td>5,200</td>
<td>sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>1178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:53</td>
<td></td>
<td>--</td>
<td>--</td>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>1180</td>
<td></td>
<td>46° 14.98'</td>
<td>124° 04.83'</td>
<td></td>
<td>23:13</td>
<td></td>
<td>6,600</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:16</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:20</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:24</td>
<td></td>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:28</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:31</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>1187</td>
<td></td>
<td></td>
<td>46° 15.04'</td>
<td>124° 04.75'</td>
<td></td>
<td>23:52</td>
<td>13</td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:56</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:59</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27 Jun 75</td>
<td>00:02</td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:05</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>219</td>
<td>1194</td>
<td></td>
<td>46° 15.07'</td>
<td>124° 04.6'</td>
<td></td>
<td>00:22</td>
<td>14</td>
<td>5,400</td>
<td>sand</td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:26</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:29</td>
<td></td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:32</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:35</td>
<td></td>
<td>8,900</td>
<td></td>
<td>0.5</td>
<td>Geological</td>
</tr>
<tr>
<td>1199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:39</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>220</td>
<td>1201</td>
<td>C7506C</td>
<td>46° 15.13'</td>
<td>124° 14.5'</td>
<td>27 Jun 75</td>
<td>00:50</td>
<td>15</td>
<td>7,200</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:54</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:58</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:01</td>
<td></td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:05</td>
<td></td>
<td>8,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:08</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>1236</td>
<td>C7509E</td>
<td>46° 12.0'</td>
<td>124° 09.0'</td>
<td>12 Sep 75</td>
<td>17:09</td>
<td>46</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:33</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:38</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:51</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:02</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:10</td>
<td></td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>1242</td>
<td></td>
<td>46° 12.5'</td>
<td>124° 06.5</td>
<td></td>
<td>18:28</td>
<td>24</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>1243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:33</td>
<td></td>
<td>2,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:38</td>
<td></td>
<td>2,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:50</td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:54</td>
<td></td>
<td>4,700</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:59</td>
<td></td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>1248</td>
<td></td>
<td>46° 11.25'</td>
<td>124° 06.33</td>
<td></td>
<td>19:20</td>
<td>29</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td>Geological</td>
</tr>
<tr>
<td>224</td>
<td>1249</td>
<td></td>
<td>46° 11.75'</td>
<td>124° 06.20</td>
<td></td>
<td>19:28</td>
<td></td>
<td>--</td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>223</td>
<td>1250</td>
<td>C7509E</td>
<td>46°11.25'</td>
<td>124°06.33</td>
<td>12 Sep 75</td>
<td>19:37</td>
<td>29</td>
<td>6,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>1255</td>
<td></td>
<td>46°11.76'</td>
<td>124°06.00</td>
<td></td>
<td>20:15</td>
<td>29</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>226</td>
<td>1256</td>
<td></td>
<td>46°11.7'</td>
<td>124°06.0'</td>
<td></td>
<td>20:19</td>
<td>24</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>1262</td>
<td></td>
<td>46°11.77'</td>
<td>124°05.85</td>
<td></td>
<td>21:00</td>
<td>22</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>228</td>
<td>1263</td>
<td></td>
<td>46°11.77'</td>
<td>124°05.65</td>
<td></td>
<td>21:10</td>
<td>22</td>
<td>6,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>1269</td>
<td></td>
<td>46°11.67'</td>
<td>124°05.57</td>
<td></td>
<td>21:42</td>
<td>22</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>230</td>
<td>1270</td>
<td>C7509E</td>
<td>46°11.68'</td>
<td>124°05.76'</td>
<td>12 Sep 75</td>
<td>22:02</td>
<td>22</td>
<td>6,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:05</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:10</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:14</td>
<td></td>
<td>6,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:18</td>
<td></td>
<td>6,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:22</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>231</td>
<td>1276</td>
<td></td>
<td>46°11.70'</td>
<td>124°05.86'</td>
<td></td>
<td>22:30</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>232</td>
<td>1277</td>
<td></td>
<td>46°11.67'</td>
<td>124°05.98'</td>
<td></td>
<td>22:36</td>
<td></td>
<td>7,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:41</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:47</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:51</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:55</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:59</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>233</td>
<td>1283</td>
<td></td>
<td>46°11.66'</td>
<td>124°06.15'</td>
<td></td>
<td>23:18</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>234</td>
<td>1284</td>
<td></td>
<td>46°11.64'</td>
<td>124°06.50'</td>
<td></td>
<td>23:24</td>
<td></td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:28</td>
<td></td>
<td>4,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:38</td>
<td></td>
<td>4,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1287</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:44</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:50</td>
<td></td>
<td>6,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 Sep 75</td>
<td>00:00</td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>235</td>
<td>1290</td>
<td>C7509E</td>
<td>46°11.64'</td>
<td>124°06.35'</td>
<td>13 Sep 75</td>
<td>00:30</td>
<td>27</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>236</td>
<td>1291</td>
<td>"</td>
<td>46°11.7'</td>
<td>124°06.3'</td>
<td>"</td>
<td>00:45</td>
<td>29</td>
<td>5,500</td>
<td>"</td>
<td>1.0</td>
<td>"</td>
</tr>
<tr>
<td>237</td>
<td>1292</td>
<td>"</td>
<td>46°11.58'</td>
<td>124°06.36'</td>
<td>"</td>
<td>00:50</td>
<td>6,400</td>
<td>6,600</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>238</td>
<td>1293</td>
<td>"</td>
<td>46°11.59'</td>
<td>124°06.22'</td>
<td>"</td>
<td>00:59</td>
<td>6,600</td>
<td>5,500</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>239</td>
<td>1294</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>01:04</td>
<td>5,200</td>
<td>5,200</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>240</td>
<td>1295</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>01:11</td>
<td>5,200</td>
<td>5,200</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>240</td>
<td>1296</td>
<td>"</td>
<td>46°11.59'</td>
<td>124°06.22'</td>
<td>"</td>
<td>01:17</td>
<td>5,200</td>
<td>5,200</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>240</td>
<td>1297</td>
<td>"</td>
<td>46°11.58'</td>
<td>124°06.36'</td>
<td>"</td>
<td>01:30</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1298</td>
<td>"</td>
<td>46°11.59'</td>
<td>124°06.22'</td>
<td>"</td>
<td>01:43</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1299</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>02:03</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1300</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>02:06</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1301</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>02:26</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1302</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>02:30</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1303</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>02:34</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1304</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>03:27</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1305</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>03:34</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1306</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>03:40</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1307</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>03:46</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1308</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>03:52</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1309</td>
<td>"</td>
<td>46°11.62'</td>
<td>124°05.79'</td>
<td>"</td>
<td>04:14</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>240</td>
<td>1310</td>
<td>"</td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td>"</td>
<td>04:22</td>
<td>7</td>
<td>6,800</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>241</td>
<td>1311</td>
<td>C7509E</td>
<td>46°11.54'</td>
<td>124°05.62'</td>
<td>13 Sep 75</td>
<td>04:34</td>
<td>24</td>
<td>6,600</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>1316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:16</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>1317</td>
<td></td>
<td>46°11.55'</td>
<td>124°05.76'</td>
<td></td>
<td>07:24</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>1322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:38</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>1323</td>
<td></td>
<td>46°11.54'</td>
<td>124°05.89'</td>
<td></td>
<td>08:42</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>1326</td>
<td></td>
<td>46°11.56'</td>
<td>124°05.62'</td>
<td></td>
<td>08:58</td>
<td>26</td>
<td>4,500</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>1331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:29</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Geological comments indicate the type of sediment or geological features observed.
- Screen size refers to the size of the screen used for sampling, with units in millimeters (mm).
- Comments column provides additional information about the station or sample.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>1332</td>
<td>C7509E</td>
<td>46°11.60'</td>
<td>124°05.93'</td>
<td>13 Sep 75</td>
<td>09:44</td>
<td>26</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>248</td>
<td>1333</td>
<td></td>
<td>46°11.58'</td>
<td>124°05.88'</td>
<td></td>
<td>09:53</td>
<td></td>
<td>6,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>1338</td>
<td></td>
<td>46°11.5'</td>
<td>124°06.0'</td>
<td></td>
<td>10:36</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>250</td>
<td>1345</td>
<td></td>
<td>46°11.52'</td>
<td>124°06.14'</td>
<td></td>
<td>11:08</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>251</td>
<td>1346</td>
<td></td>
<td>46°11.47'</td>
<td>124°06.24'</td>
<td></td>
<td>11:28</td>
<td></td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>1347</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:41</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>1348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:45</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>1349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:49</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>1350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:54</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>1351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:09</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>252</td>
<td>1352</td>
<td>C7509E</td>
<td>46°11.51'</td>
<td>124°06.37'</td>
<td>13 Sep 75</td>
<td>12:23</td>
<td>28</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>253</td>
<td>1353</td>
<td></td>
<td>46°11.43'</td>
<td>124°06.36'</td>
<td></td>
<td>12:32</td>
<td>29</td>
<td>6,400</td>
<td>--</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>1359</td>
<td></td>
<td>46°11.44'</td>
<td>124°06.23'</td>
<td></td>
<td>13:06</td>
<td>--</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>255</td>
<td>1360</td>
<td></td>
<td>46°11.45'</td>
<td>124°06.30'</td>
<td></td>
<td>13:13</td>
<td>28</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>256</td>
<td>1361</td>
<td></td>
<td>46°11.45'</td>
<td>124°06.00'</td>
<td></td>
<td>13:20</td>
<td>28</td>
<td>8,400</td>
<td>--</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>1367</td>
<td></td>
<td>46°11.49'</td>
<td>124°05.93'</td>
<td></td>
<td>13:47</td>
<td>27</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>258</td>
<td>1368</td>
<td></td>
<td>46°11.43'</td>
<td>124°05.90'</td>
<td></td>
<td>13:53</td>
<td>--</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>259</td>
<td>1369</td>
<td></td>
<td>46°11.45'</td>
<td>124°05.77'</td>
<td></td>
<td>14:00</td>
<td>--</td>
<td>8,000</td>
<td>1.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>1370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:05</td>
<td>7,600</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>1371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:09</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>259</td>
<td>1372</td>
<td>C7509E</td>
<td>46°11.45'</td>
<td>124°05.77'</td>
<td>13 Sep 75</td>
<td>14:14</td>
<td>27</td>
<td>7,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1373</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:17</td>
<td>-</td>
<td>8,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1374</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:24</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>260</td>
<td>1375</td>
<td>-</td>
<td>46°11.43'</td>
<td>124°05.61'</td>
<td>-</td>
<td>14:30</td>
<td>26</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>261</td>
<td>1376</td>
<td>-</td>
<td>46°11.5'</td>
<td>124°05.5'</td>
<td>-</td>
<td>14:37</td>
<td>-</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1377</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:46</td>
<td>-</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1378</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:49</td>
<td>-</td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1379</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:53</td>
<td>-</td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1380</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14:56</td>
<td>-</td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1381</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:00</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>262</td>
<td>1382</td>
<td>-</td>
<td>46°11.35'</td>
<td>124°05.66'</td>
<td>-</td>
<td>15:11</td>
<td>27</td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1383</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:19</td>
<td>-</td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1384</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:25</td>
<td>-</td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1385</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:30</td>
<td>-</td>
<td>4,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1386</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:37</td>
<td>-</td>
<td>6,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1387</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15:41</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>263</td>
<td>1388</td>
<td>-</td>
<td>46°11.32'</td>
<td>124°05.78'</td>
<td>-</td>
<td>15:48</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>264</td>
<td>1389</td>
<td>-</td>
<td>46°11.35'</td>
<td>124°05.99'</td>
<td>-</td>
<td>16:20</td>
<td>-</td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1390</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:24</td>
<td>-</td>
<td>8,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1391</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16:28</td>
<td>-</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>264</td>
<td>1392</td>
<td>C7509E</td>
<td>46°11.35'</td>
<td>124°05.99'</td>
<td>13 Sep 75</td>
<td>16:32</td>
<td>27</td>
<td>6,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:38</td>
<td></td>
<td>8,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:41</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>265</td>
<td>1395</td>
<td></td>
<td>46°11.34'</td>
<td>124°06.18'</td>
<td>16:53</td>
<td>27</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>266</td>
<td>1396</td>
<td></td>
<td>46°11.33'</td>
<td>124°06.26'</td>
<td>17:00</td>
<td>6,600</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:11</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:16</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:19</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:23</td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:29</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>267</td>
<td>1402</td>
<td></td>
<td>46°11.25'</td>
<td>124°06.0'</td>
<td>17:35</td>
<td>30</td>
<td>5,500</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:38</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:42</td>
<td></td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:46</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:50</td>
<td></td>
<td>6,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:56</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>268</td>
<td>1408</td>
<td></td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td>18:09</td>
<td>27</td>
<td>6,700</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:12</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:15</td>
<td></td>
<td>6,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:20</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>268</td>
<td>1412</td>
<td>C7509E</td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td>13 Sep 75</td>
<td>18:24</td>
<td>27</td>
<td>3,600</td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1413</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:28</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1414</td>
<td>-</td>
<td>46°10.0'</td>
<td>124°04.0'</td>
<td>-</td>
<td>18:40</td>
<td>-</td>
<td>3,100</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1415</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:47</td>
<td>-</td>
<td>4,300</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1416</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:51</td>
<td>-</td>
<td>4,000</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1417</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:56</td>
<td>-</td>
<td>3,500</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1418</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:04</td>
<td>-</td>
<td>4,700</td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>269</td>
<td>1419</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:08</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>270</td>
<td>1420</td>
<td>-</td>
<td>46°09.0'</td>
<td>124°03.5'</td>
<td>-</td>
<td>19:20</td>
<td>-</td>
<td>3,800</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>270</td>
<td>1421</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:26</td>
<td>-</td>
<td>5,100</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>270</td>
<td>1422</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:30</td>
<td>-</td>
<td>4,600</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>270</td>
<td>1423</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:33</td>
<td>-</td>
<td>4,300</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>270</td>
<td>1424</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:38</td>
<td>-</td>
<td>7,200</td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>270</td>
<td>1425</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:42</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>271</td>
<td>1426</td>
<td>-</td>
<td>46°09.0'</td>
<td>124°00.5'</td>
<td>-</td>
<td>20:04</td>
<td>18</td>
<td>5,200</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>271</td>
<td>1427</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:08</td>
<td>-</td>
<td>4,900</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>271</td>
<td>1428</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:11</td>
<td>-</td>
<td>4,000</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>271</td>
<td>1429</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:14</td>
<td>-</td>
<td>3,600</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>271</td>
<td>1430</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:17</td>
<td>-</td>
<td>3,500</td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>271</td>
<td>1431</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:22</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>272</td>
<td>1432</td>
<td>C7509E</td>
<td>46°12.0'</td>
<td>124°02.5'</td>
<td>13 Sep 75</td>
<td>20:50</td>
<td>17</td>
<td>5,200</td>
<td>--</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:55</td>
<td></td>
<td>4,000</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1434</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:58</td>
<td></td>
<td>4,300</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:02</td>
<td></td>
<td>3,000</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:05</td>
<td></td>
<td>5,200</td>
<td>--</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1437</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:08</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>1438</td>
<td></td>
<td>46°15.5'</td>
<td>124°07.5'</td>
<td></td>
<td>22:10</td>
<td>11</td>
<td>5,200</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1439</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:17</td>
<td></td>
<td>5,300</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:28</td>
<td></td>
<td>5,500</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:30</td>
<td></td>
<td>4,700</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1442</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:32</td>
<td></td>
<td>6,300</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:33</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>274</td>
<td>1444</td>
<td></td>
<td>46°14.0'</td>
<td>124°08.0'</td>
<td></td>
<td>22:52</td>
<td>15</td>
<td>5,400</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1445</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:55</td>
<td></td>
<td>9,200</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:57</td>
<td></td>
<td>9,200</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1447</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:01</td>
<td></td>
<td>9,200</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:05</td>
<td></td>
<td>6,600</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:08</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>1450</td>
<td></td>
<td>46°13.0'</td>
<td>124°09.0'</td>
<td></td>
<td>23:21</td>
<td>31</td>
<td>5,200</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:31</td>
<td></td>
<td>5,400</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>275</td>
<td>1452</td>
<td>C7509#</td>
<td>46°13.0'</td>
<td>124°09.0'</td>
<td>13 Sep 75</td>
<td>23:37</td>
<td>31</td>
<td>7,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1453</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:44</td>
<td></td>
<td>9,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1454</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:45</td>
<td></td>
<td>9,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:56</td>
<td></td>
<td>9,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>1456</td>
<td></td>
<td>46°13.0'</td>
<td>124°10.0'</td>
<td>14 Sep 75</td>
<td>00:23</td>
<td>42</td>
<td>10,700</td>
<td></td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1457</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:29</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:30</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1459</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:31</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:32</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1461</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:33</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>1462</td>
<td></td>
<td>46°14.0'</td>
<td>124°09.5'</td>
<td></td>
<td>01:35</td>
<td>20</td>
<td>11,000</td>
<td></td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1463</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:36</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:37</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:38</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:39</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01:40</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>1468</td>
<td></td>
<td>46°14.0'</td>
<td>124°09.0'</td>
<td></td>
<td>02:36</td>
<td>18</td>
<td>11,900</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:37</td>
<td></td>
<td>11,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:38</td>
<td></td>
<td>11,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:39</td>
<td></td>
<td>11,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>278</td>
<td>1472</td>
<td>C7509E</td>
<td>46°14.0'</td>
<td>124°09.0'</td>
<td>14 Sep 75</td>
<td>03:09</td>
<td>18</td>
<td>12,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:18</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>1474</td>
<td></td>
<td>46°14.5'</td>
<td>124°10.0'</td>
<td></td>
<td>04:17</td>
<td>22</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:23</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1476</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:36</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:41</td>
<td></td>
<td>9,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1478</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:48</td>
<td></td>
<td>4,700</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1479</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:54</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>1480</td>
<td></td>
<td>46°14.5'</td>
<td>124°10.5'</td>
<td></td>
<td>05:32</td>
<td>31</td>
<td>14,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1481</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:48</td>
<td></td>
<td>14,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:06</td>
<td></td>
<td>14,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:10</td>
<td></td>
<td>14,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:15</td>
<td></td>
<td>--</td>
<td>clayey-silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:23</td>
<td></td>
<td>14,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>1486</td>
<td></td>
<td>46°15.0'</td>
<td>124°10.5'</td>
<td></td>
<td>06:49</td>
<td></td>
<td>9,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:54</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1488</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:58</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1489</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:32</td>
<td></td>
<td>12,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:40</td>
<td></td>
<td>14,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1491</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:44</td>
<td></td>
<td>--</td>
<td>sandy-silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>282</td>
<td>1492</td>
<td>C7509E</td>
<td>46⁰15.2'</td>
<td>124⁰09.4'</td>
<td>14 Sep 75</td>
<td>08:21</td>
<td>15</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:26</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:29</td>
<td></td>
<td>3,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:33</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:35</td>
<td></td>
<td>6,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1497</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:38</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>283</td>
<td>1498</td>
<td></td>
<td>46⁰15.45'</td>
<td>124⁰05.6'</td>
<td></td>
<td>09:04</td>
<td>18</td>
<td>8,200</td>
<td>--</td>
<td></td>
<td>sample lost</td>
</tr>
<tr>
<td>1499</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:07</td>
<td></td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:30</td>
<td>19</td>
<td>4,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:34</td>
<td>18</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:37</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1503</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:40</td>
<td></td>
<td>10,700</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:45</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>284</td>
<td>1505</td>
<td></td>
<td>46⁰09.0'</td>
<td>124⁰10.5'</td>
<td></td>
<td>10:44</td>
<td>66</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:48</td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:54</td>
<td></td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:59</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1509</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:05</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:10</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>285</td>
<td>1511</td>
<td></td>
<td>46⁰09.0'</td>
<td>124⁰07.5'</td>
<td></td>
<td>11:27</td>
<td>51</td>
<td>7,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>station</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Volume (cc)</td>
<td>Sediment Type</td>
<td>Sediment Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>285</td>
<td>1512</td>
<td>C7503E</td>
<td>46°09.0'</td>
<td>124°07.5'</td>
<td>16 Sep 75</td>
<td>11:32</td>
<td>51</td>
<td>4,300</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1513</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1514</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1515</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>286</td>
<td>1517</td>
<td></td>
<td>46°09.0'</td>
<td>124°04.5'</td>
<td>12:17</td>
<td>33</td>
<td>4,600</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,800</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>287</td>
<td>1544</td>
<td></td>
<td>46°18.0'</td>
<td>124°10.0'</td>
<td>15 Sep 75</td>
<td>10:56</td>
<td>29</td>
<td>8,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1547</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>288</td>
<td>1550</td>
<td></td>
<td>46°17.0'</td>
<td>124°12.0'</td>
<td>11:37</td>
<td>44</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1552</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>1553</td>
<td>C7509W</td>
<td>46°17.0'</td>
<td>124°12.0'</td>
<td>13 Sep 75</td>
<td>11:57</td>
<td>5,200</td>
<td>1.0</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:06</td>
<td>6,400</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:15</td>
<td>--</td>
<td>sand</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>1556</td>
<td></td>
<td>46°17.0'</td>
<td>124°14.5'</td>
<td>12:40</td>
<td>55</td>
<td>9,200</td>
<td>1.0</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:47</td>
<td>8,500</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1558</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:55</td>
<td>10,300</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1559</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:05</td>
<td>11,000</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:10</td>
<td>11,500</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1561</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:17</td>
<td>--</td>
<td>silty-sand</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>1562</td>
<td></td>
<td>46°17.0'</td>
<td>124°17.0'</td>
<td>13:42</td>
<td>85</td>
<td>11,000</td>
<td>1.0</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:51</td>
<td>13,500</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1564</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:58</td>
<td>13,500</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1565</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:09</td>
<td>11,000</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:23</td>
<td>11,000</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1567</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:33</td>
<td>--</td>
<td>silty-sand</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>1568</td>
<td></td>
<td>46°14.0'</td>
<td>124°16.0'</td>
<td>15:06</td>
<td>85</td>
<td>8,600</td>
<td>1.0</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:15</td>
<td>10,800</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:22</td>
<td>8,700</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1571</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:31</td>
<td>9,900</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1572</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:36</td>
<td>12,700</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:43</td>
<td>--</td>
<td>sand</td>
<td>geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>292</td>
<td>1574</td>
<td>C75098</td>
<td>46°09.0'</td>
<td>124°14.0'</td>
<td>15 Sep 75</td>
<td>16:25</td>
<td>88</td>
<td>12,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,600</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1579</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>1587</td>
<td>C75108</td>
<td>46°12.5'</td>
<td>124°06.5'</td>
<td>21 Oct 75</td>
<td>11:14</td>
<td>22</td>
<td>6,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1588</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1589</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1592</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,300</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1593</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>1594</td>
<td></td>
<td>46°12.0'</td>
<td>124°09.0'</td>
<td></td>
<td>12:35</td>
<td>42</td>
<td>8,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1597</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,400</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>1600</td>
<td></td>
<td>46°11.7'</td>
<td>124°06.3'</td>
<td></td>
<td>13:34</td>
<td>31</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>295</td>
<td>1601</td>
<td>C7510E</td>
<td>46°11.7'</td>
<td>124°06.3'</td>
<td>21 Oct 75</td>
<td>13:42</td>
<td>31</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:59</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:06</td>
<td></td>
<td>6,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:11</td>
<td></td>
<td>5,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:18</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>296</td>
<td>1606</td>
<td></td>
<td>46°11.7'</td>
<td>124°06.0'</td>
<td></td>
<td>14:28</td>
<td>28</td>
<td>9,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1607</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:34</td>
<td></td>
<td>8,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:40</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:49</td>
<td></td>
<td>3,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1610</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:56</td>
<td></td>
<td>4,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1611</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:02</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>297</td>
<td>1612</td>
<td></td>
<td>46°11.25'</td>
<td>124°06.0'</td>
<td></td>
<td>15:17</td>
<td>29</td>
<td>5,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1613</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:30</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:35</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:45</td>
<td></td>
<td>3,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1616</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:50</td>
<td></td>
<td>6,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1617</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:54</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>298</td>
<td>1618</td>
<td></td>
<td>46°11.5'</td>
<td>124°05.5'</td>
<td></td>
<td>16:48</td>
<td>26</td>
<td>4,800</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1619</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:55</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:59</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Depth Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>298</td>
<td>1621</td>
<td>C75108</td>
<td>46°11.5'</td>
<td>124°05.5'</td>
<td>21 Oct 75</td>
<td>17:08</td>
<td>26</td>
<td>5,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td></td>
<td></td>
<td>46°11.5'</td>
<td>124°06.0'</td>
<td>17:24</td>
<td>26</td>
<td>7,200</td>
<td></td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>300</td>
<td>1630</td>
<td></td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td>18:04</td>
<td>26</td>
<td>5,200</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>1633</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>1634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>304</td>
<td>1635</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>305</td>
<td>1636</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>1637</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>1639</td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>1640</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>1641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>302</td>
<td>1642</td>
<td>C7510E</td>
<td>46°10.0'</td>
<td>124°04.0'</td>
<td>21 Oct 75</td>
<td>19:30</td>
<td>26</td>
<td>5,200</td>
<td>--</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1643</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5,500</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1644</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1645</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4,300</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1646</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5,500</td>
<td>--</td>
<td>0.5</td>
<td>--</td>
</tr>
<tr>
<td>1647</td>
<td>--</td>
<td>--</td>
<td>20:03</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>303</td>
<td>1648</td>
<td>--</td>
<td>46°09.0'</td>
<td>124°03.5'</td>
<td>20:23</td>
<td>27</td>
<td>5,400</td>
<td>1.0</td>
<td>geological</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1649</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1650</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5,500</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1651</td>
<td>--</td>
</tr>
<tr>
<td>1652</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4,700</td>
<td>--</td>
<td>0.5</td>
<td>--</td>
</tr>
<tr>
<td>1653</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>304</td>
<td>1654</td>
<td>--</td>
<td>46°09.0'</td>
<td>124°04.5'</td>
<td>20:57</td>
<td>31</td>
<td>4,700</td>
<td>1.0</td>
<td>geological</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1655</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5,500</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1656</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4,700</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1657</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4,800</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1658</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.5</td>
<td>--</td>
</tr>
<tr>
<td>1659</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>305</td>
<td>1660</td>
<td>--</td>
<td>46°09.0'</td>
<td>124°00.5'</td>
<td>21:45</td>
<td>18</td>
<td>3,500</td>
<td>1.0</td>
<td>geological</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1661</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3,700</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>305</td>
<td>1662</td>
<td>C7510X</td>
<td>46°09.0'</td>
<td>124°00.5'</td>
<td>21 Oct 75</td>
<td>21:51</td>
<td>18</td>
<td>3,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1663</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>21:58</td>
<td>-</td>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1664</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>22:03</td>
<td>-</td>
<td>3,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1665</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>22:13</td>
<td>-</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>1666</td>
<td>-</td>
<td>46°11.25'</td>
<td>124°06.23'</td>
<td>23:13</td>
<td>27</td>
<td>4,700</td>
<td></td>
<td></td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td></td>
<td>1667</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>23:17</td>
<td>-</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1668</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>23:23</td>
<td>-</td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1669</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>23:25</td>
<td>-</td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1670</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>23:31</td>
<td>-</td>
<td>--</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1671</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>23:36</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>307</td>
<td>1672</td>
<td>-</td>
<td>46°11.77'</td>
<td>124°05.65'</td>
<td>23:55</td>
<td>24</td>
<td>6,200</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1673</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>22 Oct 75</td>
<td>00:08</td>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1674</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>00:12</td>
<td>-</td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1675</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>00:17</td>
<td>-</td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1676</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>00:30</td>
<td>-</td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td></td>
<td>1677</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>00:43</td>
<td>-</td>
<td>6,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>1678</td>
<td>-</td>
<td>46°11.64'</td>
<td>124°06.5'</td>
<td>00:59</td>
<td>28</td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1679</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>01:06</td>
<td>-</td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1680</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>01:13</td>
<td>-</td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1681</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>01:17</td>
<td>-</td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-H Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>308</td>
<td>1682</td>
<td>C7510X</td>
<td>46°11.64'</td>
<td>124°06.5'</td>
<td>22 Oct 75</td>
<td>01:25</td>
<td>28</td>
<td>4,800</td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>309</td>
<td>1684</td>
<td></td>
<td>46°11.67'</td>
<td>124°05.98'</td>
<td></td>
<td>01:45</td>
<td>28</td>
<td>8,400</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>310</td>
<td>1690</td>
<td></td>
<td>46°11.68'</td>
<td>124°05.76'</td>
<td></td>
<td>02:23</td>
<td>27</td>
<td>6,200</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>311</td>
<td>1696</td>
<td></td>
<td>46°11.59'</td>
<td>124°06.22'</td>
<td></td>
<td>03:02</td>
<td>27</td>
<td>5,600</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-W Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>312</td>
<td>1702</td>
<td>C75108</td>
<td>46°11.56'</td>
<td>124°06.02'</td>
<td>22 Oct 75</td>
<td>03:52</td>
<td>26</td>
<td>8,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:00</td>
<td></td>
<td>3,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:05</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:10</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:20</td>
<td></td>
<td>6,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1707</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:27</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>313</td>
<td>1708</td>
<td></td>
<td>46°11.58'</td>
<td>124°05.88'</td>
<td></td>
<td>04:47</td>
<td>26</td>
<td>7,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:54</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:58</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1711</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:03</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:07</td>
<td></td>
<td>--</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:11</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>314</td>
<td>1714</td>
<td></td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td></td>
<td>05:30</td>
<td>26</td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:36</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:41</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1717</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:47</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:52</td>
<td></td>
<td>5,400</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:04</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>315</td>
<td>1720</td>
<td></td>
<td>46°11.47'</td>
<td>124°06.24'</td>
<td></td>
<td>06:14</td>
<td>26</td>
<td>6,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:24</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>315</td>
<td>1722</td>
<td>C7510R</td>
<td>46°11.47'</td>
<td>124°06.24'</td>
<td>22 Oct 75</td>
<td>06:24</td>
<td>26</td>
<td>4,700</td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1723</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:28</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1724</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:34</td>
<td></td>
<td>6,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:41</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>316</td>
<td>1726</td>
<td></td>
<td>46°11.55'</td>
<td>124°05.76'</td>
<td></td>
<td>06:51</td>
<td>26</td>
<td>3,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:54</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:58</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:01</td>
<td></td>
<td>4,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:04</td>
<td></td>
<td>5,500</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1731</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:07</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>317</td>
<td>1732</td>
<td></td>
<td>46°11.54'</td>
<td>124°05.62'</td>
<td></td>
<td>07:13</td>
<td>26</td>
<td>6,800</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1733</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:17</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1734</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:20</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:23</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:27</td>
<td></td>
<td>5,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:30</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>318</td>
<td>1738</td>
<td></td>
<td>46°11.43'</td>
<td>124°06.36'</td>
<td></td>
<td>08:05</td>
<td>27</td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1739</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:09</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:12</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1741</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:14</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-W Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>318</td>
<td>1742</td>
<td>C7510E</td>
<td>46°11.43'</td>
<td>124°06.36'</td>
<td>22 Oct 75</td>
<td>08:18</td>
<td>27</td>
<td>6,600</td>
<td>sand</td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>319</td>
<td>1744</td>
<td></td>
<td>46°11.45'</td>
<td>124°06.00'</td>
<td>08:28</td>
<td>26</td>
<td>9,200</td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>320</td>
<td>1750</td>
<td></td>
<td>46°11.45'</td>
<td>124°05.77'</td>
<td>08:51</td>
<td>26</td>
<td>7,600</td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>321</td>
<td>1756</td>
<td></td>
<td>46°11.33'</td>
<td>124°06.26'</td>
<td>09:21</td>
<td>29</td>
<td>5,500</td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>322</td>
<td>1762</td>
<td>C7510E</td>
<td>46°11.35'</td>
<td>124°05.99'</td>
<td>22 Oct 75</td>
<td>09:42</td>
<td>27</td>
<td>8,700</td>
<td></td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>1763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:54</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:57</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:00</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:05</td>
<td></td>
<td>7,200</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1767</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:09</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>323</td>
<td>1768</td>
<td></td>
<td>46°11.35'</td>
<td>124°05.66'</td>
<td></td>
<td>10:17</td>
<td>26</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1769</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:20</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:25</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:27</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:30</td>
<td></td>
<td>5,500</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:36</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>324</td>
<td>1782</td>
<td>C7601A</td>
<td>46°09.0'</td>
<td>124°07.5'</td>
<td>5 Jan 76</td>
<td>16:58</td>
<td>50</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1783</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:20</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1784</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:30</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1785</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:36</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1786</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:43</td>
<td></td>
<td>5,400</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:50</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>325</td>
<td>1788</td>
<td></td>
<td>46°09.0'</td>
<td>124°10.5'</td>
<td></td>
<td>18:15</td>
<td>68</td>
<td>5,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1789</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:27</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1790</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:38</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>325</td>
<td>1791</td>
<td>C7601A</td>
<td>46°09.0'</td>
<td>124°10.5'</td>
<td>5 Jan 76</td>
<td>18:54</td>
<td>68</td>
<td>1,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:05</td>
<td></td>
<td>4,600</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1793</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:13</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td></td>
<td>1794</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:20</td>
<td></td>
<td>5,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>1795</td>
<td></td>
<td>46°09.0'</td>
<td>124°14.0'</td>
<td>19:49</td>
<td>82</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1796</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:55</td>
<td></td>
<td>9,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1797</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:11</td>
<td></td>
<td>8,350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:21</td>
<td></td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1799</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:36</td>
<td></td>
<td>9,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:47</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>327</td>
<td>1801</td>
<td></td>
<td>46°14.0'</td>
<td>124°16.0'</td>
<td>21:48</td>
<td>82</td>
<td></td>
<td>9,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1802</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:00</td>
<td></td>
<td>10,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:12</td>
<td></td>
<td>8,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1804</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:22</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1805</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:32</td>
<td></td>
<td>10,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1806</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:40</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>328</td>
<td>1807</td>
<td></td>
<td>46°17.0'</td>
<td>124°17.0'</td>
<td>23:21</td>
<td>84</td>
<td></td>
<td>10,450</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1808</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:37</td>
<td></td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>1809</td>
<td></td>
<td>46°11.25'</td>
<td>124°06.33'</td>
<td>6 Jan 76</td>
<td>08:59</td>
<td>27</td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:04</td>
<td></td>
<td>4,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:07</td>
<td></td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>329</td>
<td>1812</td>
<td>C7601A</td>
<td>46°11.25'</td>
<td>124°06.33'</td>
<td>6 Jan 76</td>
<td>09:12</td>
<td>27</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:16</td>
<td></td>
<td>6,800</td>
<td>sand</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:20</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>330</td>
<td>1815</td>
<td></td>
<td>46°11.64'</td>
<td>124°06.50'</td>
<td></td>
<td>09:26</td>
<td>27</td>
<td>8,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:30</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:34</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:37</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:41</td>
<td></td>
<td>?</td>
<td>sand</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:44</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>331</td>
<td>1821</td>
<td></td>
<td>46°11.67'</td>
<td>124°05.98'</td>
<td></td>
<td>09:50</td>
<td>26</td>
<td>6,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:55</td>
<td></td>
<td>7,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:00</td>
<td></td>
<td>5,750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:04</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:07</td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1826</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:11</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>332</td>
<td>1827</td>
<td></td>
<td>46°11.68'</td>
<td>124°05.76'</td>
<td></td>
<td>10:18</td>
<td>26</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:21</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:35</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:39</td>
<td></td>
<td>5,350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:54</td>
<td></td>
<td>4,990</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1832</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:58</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>333</td>
<td>1833</td>
<td>C7601A</td>
<td>46°11.77'</td>
<td>124°05.65'</td>
<td>6 Sun 76</td>
<td>11:04</td>
<td>24</td>
<td>5,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>334</td>
<td>1839</td>
<td></td>
<td>46°11.60'</td>
<td>124°05.58'</td>
<td></td>
<td>12:03</td>
<td>26</td>
<td>4,500</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>1845</td>
<td></td>
<td>46°11.58'</td>
<td>124°05.88'</td>
<td></td>
<td>12:41</td>
<td>26</td>
<td>8,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>1851</td>
<td></td>
<td>46°11.55'</td>
<td>124°05.76'</td>
<td></td>
<td>13:17</td>
<td>27</td>
<td>5,350</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>B-W Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>336</td>
<td>1854</td>
<td>C7601A</td>
<td>66°11.55'</td>
<td>124°05.76'</td>
<td>6 Jan 76</td>
<td>13:39</td>
<td>27</td>
<td>4,150</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>337</td>
<td>1855</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:45</td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td>geological</td>
</tr>
<tr>
<td>337</td>
<td>1856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:49</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>338</td>
<td>1857</td>
<td></td>
<td>66°11.54'</td>
<td>124°05.62'</td>
<td></td>
<td>14:05</td>
<td>27</td>
<td>4,900</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>1858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:10</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>1859</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:16</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>1860</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:22</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>1861</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:27</td>
<td></td>
<td>6,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>1862</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:32</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>339</td>
<td>1863</td>
<td></td>
<td>66°11.45'</td>
<td>124°05.77'</td>
<td></td>
<td>14:40</td>
<td>28</td>
<td>9,000</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1864</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14:58</td>
<td></td>
<td>5,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:06</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:13</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1867</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:24</td>
<td></td>
<td>6,450</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:27</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>339</td>
<td>1869</td>
<td></td>
<td>66°11.35'</td>
<td>124°05.66'</td>
<td></td>
<td>15:37</td>
<td>27</td>
<td>5,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:45</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1871</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:51</td>
<td></td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:00</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:15</td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:22</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>340</td>
<td>1875</td>
<td>C7601A</td>
<td>46°11.35'</td>
<td>124°05.99'</td>
<td>6 Jan 76</td>
<td>16:37</td>
<td>29</td>
<td>4,250</td>
<td>--</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1876</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:44</td>
<td></td>
<td>7.800</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1877</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:48</td>
<td></td>
<td>4,500</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:53</td>
<td></td>
<td>6,000</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1879</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:07</td>
<td></td>
<td>4,150</td>
<td>0.5</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>1880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:18</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>341</td>
<td>1881</td>
<td></td>
<td>46°11.33'</td>
<td>124°06.26'</td>
<td></td>
<td>17:36</td>
<td>29</td>
<td>4,150</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:47</td>
<td></td>
<td>4,500</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:53</td>
<td></td>
<td>4,150</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:19</td>
<td></td>
<td>4,600</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:25</td>
<td></td>
<td>4,150</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:30</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>342</td>
<td>1887</td>
<td></td>
<td>46°11.43'</td>
<td>124°06.36'</td>
<td></td>
<td>18:36</td>
<td>29</td>
<td>5,300</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:41</td>
<td></td>
<td>5,350</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:44</td>
<td></td>
<td>3,000</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:49</td>
<td></td>
<td>4,500</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:54</td>
<td></td>
<td>6,400</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:58</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>343</td>
<td>1893</td>
<td></td>
<td>46°11.47'</td>
<td>124°06.24'</td>
<td></td>
<td>19:00</td>
<td>29</td>
<td>6,200</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:17</td>
<td></td>
<td>4,600</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:21</td>
<td></td>
<td>4,600</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>343</td>
<td>1896</td>
<td>C7601A</td>
<td>46°11.47'</td>
<td>124°06.34'</td>
<td>6 Jan 76</td>
<td>19:25</td>
<td>29</td>
<td>6,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>344</td>
<td>1899</td>
<td></td>
<td>46°11.59'</td>
<td>124°06.22'</td>
<td></td>
<td>19:37</td>
<td>29</td>
<td>6,200</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>345</td>
<td>1905</td>
<td></td>
<td>46°11.45'</td>
<td>124°06.00'</td>
<td></td>
<td>20:46</td>
<td>26</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>346</td>
<td>1911</td>
<td></td>
<td>46°11.25'</td>
<td>124°06.00'</td>
<td></td>
<td>21:33</td>
<td>27</td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-1 Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date (Jan)</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>347</td>
<td>1917</td>
<td>C7601A</td>
<td>46°12.5'</td>
<td>124°06.5'</td>
<td>6 Jan 76</td>
<td>18:49</td>
<td>23</td>
<td>5,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1918</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18:55</td>
<td>-</td>
<td>4,400</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1919</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:00</td>
<td>-</td>
<td>6,000</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1920</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:13</td>
<td>-</td>
<td>6,900</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:18</td>
<td>-</td>
<td>6,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1922</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19:24</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>348</td>
<td>1923</td>
<td>-</td>
<td>46°12.0'</td>
<td>124°02.5'</td>
<td>-</td>
<td>19:59</td>
<td>16</td>
<td>3,800</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1924</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:03</td>
<td>-</td>
<td>5,200</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1925</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:07</td>
<td>-</td>
<td>4,300</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1926</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:10</td>
<td>-</td>
<td>4,150</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1927</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:18</td>
<td>-</td>
<td>5,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1928</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20:24</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>349</td>
<td>1929</td>
<td>-</td>
<td>46°09.0'</td>
<td>124°00.5'</td>
<td>-</td>
<td>20:57</td>
<td>18</td>
<td>4,150</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:01</td>
<td>-</td>
<td>4,150</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1931</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:05</td>
<td>-</td>
<td>3,600</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1932</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:09</td>
<td>-</td>
<td>3,600</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1933</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:19</td>
<td>-</td>
<td>?</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1934</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:22</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>350</td>
<td>1935</td>
<td>-</td>
<td>46°09.0'</td>
<td>124°03.5'</td>
<td>-</td>
<td>21:47</td>
<td>27</td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1936</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:51</td>
<td>-</td>
<td>5,300</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1937</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21:56</td>
<td>-</td>
<td>-</td>
<td>sand</td>
<td>-</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>350</td>
<td>1938</td>
<td>C7601A</td>
<td>46°09.0'</td>
<td>124°03.5'</td>
<td>8 Jan 76</td>
<td>22:02</td>
<td>27</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1939</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:11</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:16</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>1941</td>
<td></td>
<td>46°09.0'</td>
<td>124°04.5'</td>
<td>22:31</td>
<td>33</td>
<td>4,700</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1942</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:43</td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:47</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:51</td>
<td></td>
<td>4,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:00</td>
<td></td>
<td>7</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1946</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:08</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>352</td>
<td>1947</td>
<td></td>
<td>46°10.0'</td>
<td>124°04.0'</td>
<td>23:26</td>
<td>29</td>
<td>4,600</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:38</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:43</td>
<td></td>
<td>4,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:48</td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1951</td>
<td></td>
<td></td>
<td></td>
<td>9 Jan 76</td>
<td>00:02</td>
<td></td>
<td>5,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:09</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>353</td>
<td>1953</td>
<td></td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td>00:28</td>
<td>27</td>
<td>4,800</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:33</td>
<td></td>
<td>4,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:38</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:43</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:54</td>
<td></td>
<td>4,700</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:59</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (μm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>354</td>
<td>C7601A</td>
<td>44°11.5'</td>
<td>124°05.5'</td>
<td>1 Jan 76</td>
<td>01:23</td>
<td>26</td>
<td>7,200</td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td>46°11.7'</td>
<td>124°06.0'</td>
<td>02:08</td>
<td>26</td>
<td>6,600</td>
<td></td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>356</td>
<td></td>
<td>46°11.7'</td>
<td>124°06.3'</td>
<td>02:55</td>
<td>31</td>
<td>4,700</td>
<td></td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>357</td>
<td></td>
<td>46°12.0'</td>
<td>124°09.0'</td>
<td>04:01</td>
<td>42</td>
<td>4,200</td>
<td></td>
<td></td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>357</td>
<td>1980</td>
<td>C7601A</td>
<td>46°12.0'</td>
<td>124°09.0'</td>
<td>9 Jan 76</td>
<td>06:54</td>
<td>42</td>
<td>5,500</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>1981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:00</td>
<td></td>
<td>4,000</td>
<td>sand</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07:25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>1983</td>
<td></td>
<td>46°13.0'</td>
<td>124°10.0'</td>
<td></td>
<td>04:59</td>
<td>46</td>
<td>4,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:48</td>
<td></td>
<td>5,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:04</td>
<td></td>
<td>5,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:25</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:30</td>
<td></td>
<td></td>
<td>sand</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>1989</td>
<td></td>
<td>46°13.0'</td>
<td>124°09.0'</td>
<td></td>
<td>08:12</td>
<td>31</td>
<td>5,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:23</td>
<td></td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:27</td>
<td></td>
<td>9,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:36</td>
<td></td>
<td>4,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:41</td>
<td></td>
<td>7,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:48</td>
<td></td>
<td></td>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>1995</td>
<td></td>
<td>46°15.0'</td>
<td>124°10.5'</td>
<td></td>
<td>09:25</td>
<td>33</td>
<td>6,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:58</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:07</td>
<td></td>
<td>2,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:18</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10:46</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:37</td>
<td></td>
<td></td>
<td>silty-sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>361</td>
<td>2001</td>
<td>C:601A</td>
<td>46°14.5'</td>
<td>124°10.5'</td>
<td>9 Jan 76</td>
<td>13:07</td>
<td>33</td>
<td>3,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:23</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:28</td>
<td></td>
<td>5,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:34</td>
<td></td>
<td>5,350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:41</td>
<td></td>
<td>5,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:47</td>
<td></td>
<td>--</td>
<td>silty-sand</td>
<td></td>
<td>geological</td>
</tr>
</tbody>
</table>

362	2007		46°14.5'	124°10.0'		13:57	26	4,700		1.0	
2008						14:03		5,350			
2009						14:07		4,600			
2010						14:12		4,800			
2011						14:17		5,100		0.5	
2012						14:22		--	sand		geological

328(cont)	2013		46°17.0'	124°17.0'		16:52	82	11,50		1.0	
2014						17:07		10,800			
2015						17:18		11,200		0.5	
2016						17:27		--	silty-sand		geological

<p>| 363 | 2017 | | 46°17.0' | 124°14.5 | | 17:56 | 64 | 7,600 | | 1.0 | |
| 2018 | | | | | | 18:09 | | 6,600 | | | |
| 2019 | | | | | | 18:19 | | 8,200 | | | |
| 2020 | | | | | | 18:30 | | 11,000 | | | |
| 2021 | | | | | | 18:43 | | -- | | 0.5 | |</p>
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Grab No.</th>
<th>Cruise No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Bottom Time</th>
<th>Depth (m)</th>
<th>Sediment Volume (cc)</th>
<th>Sediment Type</th>
<th>Screen Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>363</td>
<td>2022</td>
<td>C7601A</td>
<td>46°17.0'</td>
<td>124°14.5'</td>
<td>9 Jan 76</td>
<td>18:54</td>
<td>64</td>
<td>--</td>
<td>silty-sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>364</td>
<td>2023</td>
<td></td>
<td>46°17.0'</td>
<td>124°12.0'</td>
<td></td>
<td>19:29</td>
<td>37</td>
<td>4,300</td>
<td>--</td>
<td>1.0</td>
<td>geological</td>
</tr>
<tr>
<td>365</td>
<td>2028</td>
<td></td>
<td>46°18.0'</td>
<td>124°10.0'</td>
<td></td>
<td>20:05</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>366</td>
<td>2034</td>
<td></td>
<td>46°15.2'</td>
<td>124°09.4'</td>
<td></td>
<td>21:30</td>
<td>15</td>
<td>5,400</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>367</td>
<td>2041</td>
<td>C7604B</td>
<td>46°11.64'</td>
<td>124°06.5'</td>
<td>19 Apr 76</td>
<td>19:30</td>
<td>29</td>
<td>3,700</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>367</td>
<td>2043</td>
<td>C76049</td>
<td>46°11.64'</td>
<td>124°06.5'</td>
<td>19 Apr 76</td>
<td>20:00</td>
<td>29</td>
<td>7,200</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:04</td>
<td></td>
<td>5,350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:09</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:18</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>368</td>
<td>2047</td>
<td></td>
<td>46°11.66'</td>
<td>124°05.76'</td>
<td>20:33</td>
<td>26</td>
<td>5,600</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:41</td>
<td></td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:48</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:52</td>
<td></td>
<td>5,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:55</td>
<td></td>
<td>5,600</td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20:59</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>369</td>
<td>2053</td>
<td></td>
<td>46°11.56'</td>
<td>124°06.02'</td>
<td>21:35</td>
<td>25</td>
<td>8,400</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:40</td>
<td></td>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:43</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21:59</td>
<td></td>
<td>7,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:02</td>
<td></td>
<td>4,900</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2058</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:11</td>
<td></td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>370</td>
<td>2059</td>
<td></td>
<td>46°11.58'</td>
<td>124°05.88'</td>
<td>22:42</td>
<td>25</td>
<td>5,500</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:46</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22:51</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:05</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23:17</td>
<td></td>
<td>7,600</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>370</td>
<td>2064</td>
<td>C760-46</td>
<td>46°11.58'</td>
<td>124°05.08'</td>
<td>19 Apr 76</td>
<td>23:22</td>
<td>25</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>371</td>
<td>2065</td>
<td></td>
<td>46°11.47'</td>
<td>124°06.24'</td>
<td></td>
<td>23:36</td>
<td>29</td>
<td>5,500</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>2071</td>
<td></td>
<td>46°11.55'</td>
<td>124°05.76'</td>
<td></td>
<td>00:21</td>
<td>26</td>
<td>6,400</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>373</td>
<td>2077</td>
<td></td>
<td>46°11.45'</td>
<td>124°06.00'</td>
<td></td>
<td>01:13</td>
<td>28</td>
<td>6,800</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>374</td>
<td>2083</td>
<td></td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td></td>
<td>02:09</td>
<td>26</td>
<td>6,200</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>374</td>
<td>2085</td>
<td>C76043</td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td>20 Apr 76</td>
<td>02:20</td>
<td>26</td>
<td>6,400</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:25</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:32</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:36</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>375</td>
<td>2089</td>
<td></td>
<td>46°10.0'</td>
<td>124°04.0'</td>
<td>02:55</td>
<td>28</td>
<td></td>
<td>5,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:07</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:12</td>
<td></td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2092</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:28</td>
<td></td>
<td>5,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:34</td>
<td></td>
<td>5,200</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03:49</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>376</td>
<td>0295</td>
<td></td>
<td>46°11.5'</td>
<td>124°05.5'</td>
<td>04:23</td>
<td>27</td>
<td></td>
<td>6,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:28</td>
<td></td>
<td>4,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:35</td>
<td></td>
<td>4,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:40</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:47</td>
<td></td>
<td>7,350</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04:50</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>377</td>
<td>2101</td>
<td></td>
<td>46°11.25'</td>
<td>124°06.0'</td>
<td>05:19</td>
<td>29</td>
<td></td>
<td>5,350</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:24</td>
<td></td>
<td>5,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:31</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:36</td>
<td></td>
<td>6,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:40</td>
<td></td>
<td>5,100</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-N Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>371</td>
<td>2106</td>
<td>C76046</td>
<td>46°11.25'</td>
<td>124°06.0'</td>
<td>20 Apr 76</td>
<td>05:44</td>
<td>29</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>378</td>
<td>2107</td>
<td></td>
<td>46°11.5'</td>
<td>124°06.0'</td>
<td>*</td>
<td>05:57</td>
<td>29</td>
<td>3,500</td>
<td>sand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2108</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2109</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2110</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2111</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5,700</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2112</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>379</td>
<td>2113</td>
<td></td>
<td>46°09.0'</td>
<td>124°14.0'</td>
<td>*</td>
<td>09:05</td>
<td>86</td>
<td>--</td>
<td>mud</td>
<td>1.0</td>
<td>polychaeta only</td>
</tr>
<tr>
<td>2114</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>--</td>
<td>mud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>2115</td>
<td>C7606A</td>
<td>46°10.0'</td>
<td>124°04.0'</td>
<td>7 Jun 76</td>
<td>20:14</td>
<td>26</td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2116</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>20:18</td>
<td>*</td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>20:29</td>
<td>*</td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>20:33</td>
<td>*</td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2119</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>20:38</td>
<td>*</td>
<td>5,400</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2120</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>20:43</td>
<td>*</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>381</td>
<td>2121</td>
<td></td>
<td>46°11.0'</td>
<td>124°05.0'</td>
<td>*</td>
<td>21:04</td>
<td>26</td>
<td>5,600</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2122</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21:07</td>
<td>*</td>
<td>5,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2123</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21:12</td>
<td>*</td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2124</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21:17</td>
<td>*</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2125</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21:20</td>
<td>*</td>
<td>6,300</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2126</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21:25</td>
<td>*</td>
<td>--</td>
<td>sand</td>
<td>--</td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>2127</td>
<td>C760GA</td>
<td>46°11.5'</td>
<td>124°05.5'</td>
<td>7 Jun 76</td>
<td>21:39</td>
<td>26</td>
<td></td>
<td>1.0</td>
<td>sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2128</td>
<td></td>
<td></td>
<td></td>
<td>21:43</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2129</td>
<td></td>
<td></td>
<td></td>
<td>21:46</td>
<td></td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2130</td>
<td></td>
<td></td>
<td></td>
<td>21:50</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2131</td>
<td></td>
<td></td>
<td></td>
<td>21:53</td>
<td></td>
<td>5,400</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2132</td>
<td></td>
<td></td>
<td></td>
<td>21:58</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>2133</td>
<td></td>
<td>46°11.5'</td>
<td>124°06.0'</td>
<td>7 Jun 76</td>
<td>22:21</td>
<td>27</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2134</td>
<td></td>
<td></td>
<td></td>
<td>22:25</td>
<td></td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2135</td>
<td></td>
<td></td>
<td></td>
<td>22:28</td>
<td></td>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2136</td>
<td></td>
<td></td>
<td></td>
<td>22:32</td>
<td></td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2137</td>
<td></td>
<td></td>
<td></td>
<td>22:35</td>
<td></td>
<td>7,500</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2138</td>
<td></td>
<td></td>
<td></td>
<td>22:39</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384</td>
<td>2139</td>
<td></td>
<td>46°11.45'</td>
<td>124°06.00'</td>
<td>7 Jun 76</td>
<td>22:56</td>
<td>27</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2140</td>
<td></td>
<td></td>
<td></td>
<td>22:59</td>
<td></td>
<td>8,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2141</td>
<td></td>
<td></td>
<td></td>
<td>23:03</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2142</td>
<td></td>
<td></td>
<td></td>
<td>23:07</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2143</td>
<td></td>
<td></td>
<td></td>
<td>23:10</td>
<td></td>
<td>8,200</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2144</td>
<td></td>
<td></td>
<td></td>
<td>23:14</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>2145</td>
<td></td>
<td>46°11.47'</td>
<td>124°06.24'</td>
<td>7 Jun 76</td>
<td>23:25</td>
<td>27</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2146</td>
<td></td>
<td></td>
<td></td>
<td>23:28</td>
<td></td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2147</td>
<td></td>
<td></td>
<td></td>
<td>23:31</td>
<td></td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Sediment Type</td>
<td>Sediment Volume (cc)</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Bottom Depth (m)</td>
<td>Bottom Time</td>
<td>Date Time</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2148</td>
<td>sand</td>
<td>8,200</td>
<td>46°11'.47'</td>
<td>124°06'.24'</td>
<td>7 Jun 76</td>
<td>23:37</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2149</td>
<td>sand</td>
<td>7,700</td>
<td>46°11'.56'</td>
<td>124°06'.02'</td>
<td>8 Jun 76</td>
<td>00:03</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>sand</td>
<td>6,200</td>
<td>46°11'.64'</td>
<td>124°05'.88'</td>
<td>8 Jun 76</td>
<td>00:34</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2151</td>
<td>sand</td>
<td>6,800</td>
<td>46°11'.58'</td>
<td>124°05'.48'</td>
<td>8 Jun 76</td>
<td>00:38</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2152</td>
<td>sand</td>
<td>7,200</td>
<td>46°11'.64'</td>
<td>124°06'.5'</td>
<td>8 Jun 76</td>
<td>01:04</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2153</td>
<td>sand</td>
<td>7,600</td>
<td>46°11'.58'</td>
<td>124°05'.88'</td>
<td>8 Jun 76</td>
<td>01:10</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2154</td>
<td>sand</td>
<td>8,300</td>
<td>46°11'.58'</td>
<td>124°05'.88'</td>
<td>8 Jun 76</td>
<td>01:13</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2155</td>
<td>sand</td>
<td>8,400</td>
<td>46°11'.58'</td>
<td>124°05'.88'</td>
<td>8 Jun 76</td>
<td>01:19</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2156</td>
<td>sand</td>
<td>8,400</td>
<td>46°11'.58'</td>
<td>124°05'.88'</td>
<td>8 Jun 76</td>
<td>01:43</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2157</td>
<td>sand</td>
<td>8,400</td>
<td>46°11'.58'</td>
<td>124°05'.88'</td>
<td>8 Jun 76</td>
<td>01:55</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>S-M Grab No.</td>
<td>Cruise No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Bottom Time</td>
<td>Depth (m)</td>
<td>Sediment Volume (cc)</td>
<td>Sediment Type</td>
<td>Screen Size (mm)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>389</td>
<td>2169</td>
<td>C7606A</td>
<td>46°11.55'</td>
<td>124°05.76'</td>
<td>8 Jun 76</td>
<td>02:07</td>
<td>25</td>
<td>7,800</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:11</td>
<td></td>
<td>5,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:15</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:19</td>
<td></td>
<td>6,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:22</td>
<td></td>
<td>8,000</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02:28</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>390</td>
<td></td>
<td></td>
<td>46°11.25'</td>
<td>124°06.0'</td>
<td></td>
<td>05:16</td>
<td>27</td>
<td>6,300</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:20</td>
<td></td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:23</td>
<td></td>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:27</td>
<td></td>
<td>5,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:31</td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:35</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>391</td>
<td>2181</td>
<td></td>
<td>46°11.68'</td>
<td>124°05.76'</td>
<td></td>
<td>05:44</td>
<td>26</td>
<td>7,100</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:48</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:53</td>
<td></td>
<td>6,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05:57</td>
<td></td>
<td>6,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:01</td>
<td></td>
<td>4,900</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06:04</td>
<td></td>
<td>--</td>
<td>sand</td>
<td></td>
<td>geological</td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Date</td>
<td>Depth (m)</td>
<td>Start Tow</td>
<td>Finish Tow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitude N</td>
<td>Longitude W</td>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>41</td>
<td>C7412B</td>
<td>12/8/75</td>
<td>30</td>
<td>46°11.1'</td>
<td>124°06.9'</td>
<td>1257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>30</td>
<td>46°11.2'</td>
<td>124°06.5'</td>
<td>1352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>20</td>
<td>46°11.3'</td>
<td>124°04.7'</td>
<td>1449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>20</td>
<td>46°11.3'</td>
<td>124°04.7'</td>
<td>1537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>911</td>
<td>C7504B</td>
<td>4/21/75</td>
<td>86</td>
<td>46°08.3'</td>
<td>124°13.1'</td>
<td>2140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>911</td>
<td></td>
<td></td>
<td>86</td>
<td>46°09.1'</td>
<td>124°13.8'</td>
<td>2310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>912</td>
<td></td>
<td>4/22/75</td>
<td>73</td>
<td>46°08.1'</td>
<td>124°09.7'</td>
<td>0038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>913</td>
<td></td>
<td></td>
<td>73</td>
<td>46°08.1'</td>
<td>124°09.7'</td>
<td>0156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>914</td>
<td></td>
<td></td>
<td>53</td>
<td>46°07.8'</td>
<td>124°06.8'</td>
<td>0316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>915</td>
<td></td>
<td></td>
<td>53</td>
<td>46°08.6'</td>
<td>124°07.1'</td>
<td>0430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917</td>
<td></td>
<td></td>
<td>37</td>
<td>46°08.2'</td>
<td>124°04.2'</td>
<td>0719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>918</td>
<td></td>
<td></td>
<td>24</td>
<td>46°10.1'</td>
<td>124°05.5'</td>
<td>0809</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Date</td>
<td>Depth (m)</td>
<td>Start Tow</td>
<td>Finish Tow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitude N</td>
<td>Longitude W</td>
<td>Time</td>
<td>Latitude N</td>
<td>Longitude W</td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>919</td>
<td>C7504B</td>
<td>4/22/75</td>
<td>18</td>
<td>46°09.8'</td>
<td>124°01.5'</td>
<td>0911</td>
<td>46°08.2'</td>
<td>124°00.2'</td>
<td>0940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>920</td>
<td></td>
<td>18</td>
<td>18</td>
<td>46°10.0'</td>
<td>124°01.3'</td>
<td>1002</td>
<td>46°08.1'</td>
<td>123°01.1'</td>
<td>1032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>921</td>
<td></td>
<td></td>
<td>37</td>
<td>46°11.8'</td>
<td>124°08.1'</td>
<td>1129</td>
<td>46°10.7'</td>
<td>124°06.5'</td>
<td>1159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>922*</td>
<td></td>
<td></td>
<td>37</td>
<td>46°11.7'</td>
<td>124°07.6'</td>
<td>1238</td>
<td>46°10.4'</td>
<td>124°06.0'</td>
<td>1308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1151</td>
<td>C7506C</td>
<td>6/25/75</td>
<td>18</td>
<td>46°12.2'</td>
<td>124°04.0'</td>
<td>1933</td>
<td>46°11.3'</td>
<td>124°02.9'</td>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1152</td>
<td></td>
<td>17</td>
<td>17</td>
<td>46°12.3'</td>
<td>124°04.0'</td>
<td>2024</td>
<td>46°11.4'</td>
<td>124°03.3'</td>
<td>2053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1153</td>
<td></td>
<td>20</td>
<td>20</td>
<td>46°12.1'</td>
<td>124°05.3'</td>
<td>2117</td>
<td>46°11.1'</td>
<td>124°04.3'</td>
<td>2146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1154</td>
<td></td>
<td>9</td>
<td>9</td>
<td>46°15.6'</td>
<td>124°06.8'</td>
<td>2242</td>
<td>46°15.6'</td>
<td>124°09.9'</td>
<td>2310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1155</td>
<td></td>
<td>6/25-26/75</td>
<td>9</td>
<td>46°15.6'</td>
<td>124°06.7'</td>
<td>2340</td>
<td>46°15.6'</td>
<td>124°08.5'</td>
<td>0010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1156</td>
<td></td>
<td>6/26/75</td>
<td>18</td>
<td>46°14.4'</td>
<td>124°08.7'</td>
<td>0102</td>
<td>46°13.3'</td>
<td>124°07.6'</td>
<td>0132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1157</td>
<td></td>
<td>28</td>
<td>28</td>
<td>46°12.3'</td>
<td>124°07.0'</td>
<td>0220</td>
<td>46°11.3'</td>
<td>124°06.0'</td>
<td>0250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1158</td>
<td></td>
<td>26</td>
<td>26</td>
<td>46°12.0'</td>
<td>124°06.3'</td>
<td>0330</td>
<td>46°11.0'</td>
<td>124°05.7'</td>
<td>0400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1159</td>
<td></td>
<td>37</td>
<td>37</td>
<td>46°11.5'</td>
<td>124°07.6'</td>
<td>0443</td>
<td>46°10.5'</td>
<td>124°07.1'</td>
<td>0513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1160</td>
<td></td>
<td>37</td>
<td>37</td>
<td>46°11.7'</td>
<td>124°08.2'</td>
<td>0556</td>
<td>46°10.8'</td>
<td>124°07.5'</td>
<td>0626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1161</td>
<td></td>
<td>40</td>
<td>40</td>
<td>46°09.5'</td>
<td>124°06.3'</td>
<td>0659</td>
<td>46°08.6'</td>
<td>124°06.2'</td>
<td>0730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Date</td>
<td>Depth (m)</td>
<td>Start Tow</td>
<td>Finish Tow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitude N</td>
<td>Longitude W</td>
<td>Time</td>
<td>Latitude N</td>
<td>Longitude W</td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1162</td>
<td>C7506C</td>
<td>6/26/75</td>
<td>40</td>
<td>46°09.5'</td>
<td>124°06.9'</td>
<td>0823</td>
<td>46°08.7'</td>
<td>124°06.1'</td>
<td>0848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1163</td>
<td>"</td>
<td></td>
<td>59</td>
<td>46°09.5'</td>
<td>124°09.9'</td>
<td>0924</td>
<td>46°08.7'</td>
<td>124°09.2'</td>
<td>0954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1164</td>
<td>"</td>
<td></td>
<td>58</td>
<td>46°09.7'</td>
<td>124°10.0'</td>
<td>1020</td>
<td>46°08.8'</td>
<td>124°09.2'</td>
<td>1050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1165</td>
<td>"</td>
<td></td>
<td>80</td>
<td>46°09.6'</td>
<td>124°13.3'</td>
<td>1128</td>
<td>46°08.8'</td>
<td>124°12.5'</td>
<td>1158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1166</td>
<td>"</td>
<td></td>
<td>80</td>
<td>46°09.6'</td>
<td>124°13.2'</td>
<td>1244</td>
<td>46°08.8'</td>
<td>124°12.4'</td>
<td>1314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1167</td>
<td>"</td>
<td></td>
<td>22</td>
<td>46°14.5'</td>
<td>124°19.7'</td>
<td>1417</td>
<td>46°13.8'</td>
<td>124°09.4'</td>
<td>1447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1168</td>
<td>"</td>
<td></td>
<td>37</td>
<td>46°13.7'</td>
<td>124°10.4'</td>
<td>1630</td>
<td>46°12.7'</td>
<td>124°10.1'</td>
<td>1700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1169</td>
<td>"</td>
<td></td>
<td>35</td>
<td>46°09.5'</td>
<td>124°04.9'</td>
<td>1752</td>
<td>46°08.3'</td>
<td>124°03.9'</td>
<td>1822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1170</td>
<td>"</td>
<td></td>
<td>35</td>
<td>46°09.5'</td>
<td>124°04.7'</td>
<td>1845</td>
<td>46°08.6'</td>
<td>124°04.2'</td>
<td>1915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1171</td>
<td>"</td>
<td></td>
<td>17</td>
<td>46°10.1'</td>
<td>124°01.0'</td>
<td>1945</td>
<td>46°08.8'</td>
<td>124°00.4'</td>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1172</td>
<td>"</td>
<td></td>
<td>17</td>
<td>46°10.1'</td>
<td>124°01.3'</td>
<td>2039</td>
<td>46°08.8'</td>
<td>124°00.2'</td>
<td>2109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1524</td>
<td>C7509E</td>
<td>9/14/75</td>
<td>27</td>
<td>46°11.8'</td>
<td>124°06.7'</td>
<td>1522</td>
<td>46°10.8'</td>
<td>124°05.2'</td>
<td>1552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1525</td>
<td>"</td>
<td></td>
<td>29</td>
<td>46°10.4'</td>
<td>124°05.3'</td>
<td>1611</td>
<td>46°11.4'</td>
<td>124°06.2'</td>
<td>1641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1526</td>
<td>"</td>
<td></td>
<td>26</td>
<td>46°11.4'</td>
<td>124°05.3'</td>
<td>1658</td>
<td>46°10.4'</td>
<td>124°03.8'</td>
<td>1728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1527</td>
<td>"</td>
<td></td>
<td>22</td>
<td>46°11.0'</td>
<td>124°04.1'</td>
<td>1747</td>
<td>46°11.7'</td>
<td>124°05.2'</td>
<td>1817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Cruise No.</td>
<td>Date</td>
<td>Depth (m)</td>
<td>Start Tow Latitude N</td>
<td>Start Tow Longitude W</td>
<td>Start Tow Time</td>
<td>Finish Tow Latitude N</td>
<td>Finish Tow Longitude W</td>
<td>Finish Tow Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1528</td>
<td>C7509E</td>
<td>9/14/75</td>
<td>20</td>
<td>46°12.2'</td>
<td>124°05.2'</td>
<td>1839</td>
<td>46°10.9'</td>
<td>124°04.1'</td>
<td>1909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1529</td>
<td></td>
<td></td>
<td>20</td>
<td>46°10.7'</td>
<td>124°02.5'</td>
<td>1935</td>
<td>46°11.7'</td>
<td>124°04.1'</td>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1530</td>
<td></td>
<td></td>
<td>18</td>
<td>46°12.1'</td>
<td>124°04.0'</td>
<td>2024</td>
<td>46°11.0'</td>
<td>124°03.0'</td>
<td>2054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1531</td>
<td></td>
<td></td>
<td>19</td>
<td>46°09.7'</td>
<td>124°00.9'</td>
<td>2130</td>
<td>46°08.0'</td>
<td>123°59.8'</td>
<td>2200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1532</td>
<td></td>
<td></td>
<td>19</td>
<td>46°08.1'</td>
<td>123°59.9'</td>
<td>2214</td>
<td>46°09.1'</td>
<td>124°00.8'</td>
<td>2244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1533</td>
<td></td>
<td></td>
<td>34</td>
<td>46°09.5'</td>
<td>124°05.0'</td>
<td>2327</td>
<td>46°07.8'</td>
<td>124°04.0'</td>
<td>2344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1534</td>
<td></td>
<td>15/75</td>
<td>36</td>
<td>46°08.0'</td>
<td>124°03.8'</td>
<td>0017</td>
<td>46°09.0'</td>
<td>124°05.0'</td>
<td>0047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1535</td>
<td></td>
<td></td>
<td>44</td>
<td>46°09.4'</td>
<td>124°07.2'</td>
<td>0118</td>
<td>46°07.9'</td>
<td>124°06.2'</td>
<td>0148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1536</td>
<td></td>
<td></td>
<td>48</td>
<td>46°08.1'</td>
<td>124°06.2'</td>
<td>0207</td>
<td>46°09.3'</td>
<td>124°06.7'</td>
<td>0237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1537</td>
<td></td>
<td></td>
<td>56</td>
<td>46°09.3'</td>
<td>124°08.8'</td>
<td>0307</td>
<td>46°08.0'</td>
<td>124°08.4'</td>
<td>0337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1538</td>
<td></td>
<td></td>
<td>62</td>
<td>46°08.2'</td>
<td>124°08.4'</td>
<td>0400</td>
<td>46°09.3'</td>
<td>124°09.5'</td>
<td>0430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1539</td>
<td></td>
<td></td>
<td>82</td>
<td>46°09.2'</td>
<td>124°13.0'</td>
<td>0510</td>
<td>46°08.1'</td>
<td>124°12.0'</td>
<td>0540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1540</td>
<td></td>
<td></td>
<td>82</td>
<td>46°08.2'</td>
<td>124°12.5'</td>
<td>0620</td>
<td>46°10.0'</td>
<td>124°13.6'</td>
<td>0650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1541</td>
<td></td>
<td></td>
<td>37</td>
<td>46°11.4'</td>
<td>124°07.6'</td>
<td>0740</td>
<td>46°10.2'</td>
<td>124°06.8'</td>
<td>0810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1542</td>
<td></td>
<td></td>
<td>37</td>
<td>46°10.5'</td>
<td>124°06.0'</td>
<td>0825</td>
<td>46°11.7'</td>
<td>124°07.8'</td>
<td>0855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruise No.</td>
<td>Date</td>
<td>Depth (m)</td>
<td>Latitude N</td>
<td>Longitude W</td>
<td>Start Time</td>
<td>Finish Time</td>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.3'</td>
<td>124°10.4'</td>
<td>1820</td>
<td>124°10.7'</td>
<td>46°14.3'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.1'</td>
<td>124°10.3'</td>
<td>1953</td>
<td>124°10.7'</td>
<td>46°14.1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1582</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.0'</td>
<td>124°10.3'</td>
<td>1955</td>
<td>124°10.7'</td>
<td>46°13.0'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1583</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1584</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1585</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1586</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1587</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1588</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1589</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1591</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1592</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1593</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1594</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1595</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1596</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1597</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1598</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1599</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>9/16/75</td>
<td>34</td>
<td>46°14.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°14.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>9/16/75</td>
<td>34</td>
<td>46°13.7'</td>
<td>124°10.8'</td>
<td>2025</td>
<td>124°10.7'</td>
<td>46°13.7'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Beam trawl sample not included in results.
Table C-IIB

Alphabetical Species List

<table>
<thead>
<tr>
<th>Species (MCR Code)</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarenicola sp. #1 (219)</td>
<td></td>
</tr>
<tr>
<td>Acanthomysis alaskensis? (537)</td>
<td>40416</td>
</tr>
<tr>
<td>Acanthomysis davisi (114)</td>
<td>23879</td>
</tr>
<tr>
<td>Acanthomysis macropsis (113)</td>
<td>23856</td>
</tr>
<tr>
<td>Acanthomysis nephrothalma (115)</td>
<td>23880</td>
</tr>
<tr>
<td>Acanthomysis spp. (119)</td>
<td>23874</td>
</tr>
<tr>
<td>Accedomoera sp. #1 (187)</td>
<td>40475</td>
</tr>
<tr>
<td>Acila castrensis (19)</td>
<td>21931</td>
</tr>
<tr>
<td>Acteocina? sp. #1 (518)</td>
<td>40370</td>
</tr>
<tr>
<td>Adontorhina cycilia (26)</td>
<td>40083</td>
</tr>
<tr>
<td>Aedicira sp. #1 (392)</td>
<td>40285</td>
</tr>
<tr>
<td>Aglaja diomedea (30)</td>
<td>40146</td>
</tr>
<tr>
<td>Allorchestes sp. #1 (490)</td>
<td>24197</td>
</tr>
<tr>
<td>Ampelisca agassizi (123)</td>
<td>24004</td>
</tr>
<tr>
<td>Ampelisca brevisimulata (125)</td>
<td>40447</td>
</tr>
<tr>
<td>Ampelisca hancocki (122)</td>
<td>24005</td>
</tr>
<tr>
<td>Ampelisca macrocephala (121)</td>
<td>24006</td>
</tr>
<tr>
<td>Ampharete acutifrons (221)</td>
<td>19710</td>
</tr>
<tr>
<td>Ampharete arctica (439)</td>
<td>19713</td>
</tr>
<tr>
<td>Ampharete spp. (223)</td>
<td>19709</td>
</tr>
<tr>
<td>Ampharetidae spp. (290)</td>
<td>19700</td>
</tr>
<tr>
<td>Amphicteis sp. #1 (452)</td>
<td>40123</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Amphiodia periercta-urtica complex (425)</td>
<td>40489</td>
</tr>
<tr>
<td>Amphiodia periercta (83)</td>
<td>17607</td>
</tr>
<tr>
<td>Amphiodia sp. #1 (89)</td>
<td>17608</td>
</tr>
<tr>
<td>Amphiodia spp. (87)</td>
<td>17603</td>
</tr>
<tr>
<td>Amphiodia urtica (84)</td>
<td>17606</td>
</tr>
<tr>
<td>Amphioplus hexacanthus (93)</td>
<td>17613</td>
</tr>
<tr>
<td>Amphiura sp. #1 (90)</td>
<td>17618</td>
</tr>
<tr>
<td>Amphiuridae spp. (85)</td>
<td>17602</td>
</tr>
<tr>
<td>Anaitides groenlandica (323)</td>
<td>40292</td>
</tr>
<tr>
<td>Anaitides longipes (544)</td>
<td>40293</td>
</tr>
<tr>
<td>Anaitides mucosa (324)</td>
<td>40291</td>
</tr>
<tr>
<td>Anaitides sp. #3 (383)</td>
<td>40300</td>
</tr>
<tr>
<td>Anaitides sp. #4 (272)</td>
<td>40301</td>
</tr>
<tr>
<td>Anitides spp. (340)</td>
<td>19143</td>
</tr>
<tr>
<td>Anisogammarus confervicolus (488)</td>
<td>24607</td>
</tr>
<tr>
<td>Anisogammarus pugettensis (489)</td>
<td>24069</td>
</tr>
<tr>
<td>Anobothrus gracilis? (389)</td>
<td>19702</td>
</tr>
<tr>
<td>Anonyx adoxus (176)</td>
<td>40045</td>
</tr>
<tr>
<td>Anthozoa sp. #1 (377)</td>
<td>40252</td>
</tr>
<tr>
<td>Anthozoa sp. #2 (378)</td>
<td>40253</td>
</tr>
<tr>
<td>Anthozoa sp. #3 (379)</td>
<td>40254</td>
</tr>
<tr>
<td>Anthozoa sp. #4 (428)</td>
<td>40255</td>
</tr>
<tr>
<td>Anthozoa sp. #5 (429)</td>
<td>40256</td>
</tr>
<tr>
<td>Anthozoa sp. #6 (430)</td>
<td>40257</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Anthozoa spp. (382)</td>
<td>12000</td>
</tr>
<tr>
<td>Antinoella macrolepida? (395)</td>
<td>40281</td>
</tr>
<tr>
<td>Aoridae sp. #1 (168)</td>
<td>40449</td>
</tr>
<tr>
<td>Aoroides columbiae (167)</td>
<td>24029</td>
</tr>
<tr>
<td>Apistobranchus ornatus (225)</td>
<td>40362</td>
</tr>
<tr>
<td>Arabella spp. (283)</td>
<td>19382</td>
</tr>
<tr>
<td>Arabillidae sp. #1 (455)</td>
<td>40317</td>
</tr>
<tr>
<td>Arabellidae sp. #3 (433)</td>
<td>40318</td>
</tr>
<tr>
<td>Arabellidae sp. #4 (270)</td>
<td>40319</td>
</tr>
<tr>
<td>Arabellidae spp. (387)</td>
<td>19380</td>
</tr>
<tr>
<td>Archeomysis grebnitzkii (110)</td>
<td>23855</td>
</tr>
<tr>
<td>Archynchite pugettensis (74)</td>
<td>25403</td>
</tr>
<tr>
<td>Arenicolidae spp. (386)</td>
<td>19620</td>
</tr>
<tr>
<td>Argeia pugettensis (200)</td>
<td>23929</td>
</tr>
<tr>
<td>Argeia spp. (505)</td>
<td>40440</td>
</tr>
<tr>
<td>Argissa hamatipes (181)</td>
<td>24245</td>
</tr>
<tr>
<td>Aricidea neosuecica (446)</td>
<td>40094</td>
</tr>
<tr>
<td>Aricidea ramosa (226)</td>
<td>19113</td>
</tr>
<tr>
<td>Aricidea sp. #1 (227)</td>
<td>19114</td>
</tr>
<tr>
<td>Aricidea spp. (355)</td>
<td>19111</td>
</tr>
<tr>
<td>Armandia bioculata (228)</td>
<td>19541</td>
</tr>
<tr>
<td>Armina californica (416)</td>
<td>40375</td>
</tr>
<tr>
<td>Artacama coniferi (260)</td>
<td>19722</td>
</tr>
<tr>
<td>Artacamella hancocki (229)</td>
<td>40355</td>
</tr>
</tbody>
</table>
Table C-IIB (continued)

<table>
<thead>
<tr>
<th>Species (MCR Code)</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asychis disparidentata (406)</td>
<td>40336</td>
</tr>
<tr>
<td>Asychis sp. #2 (457)</td>
<td>40337</td>
</tr>
<tr>
<td>Asychis spp. (462)</td>
<td>19566</td>
</tr>
<tr>
<td>Atylus tridens (154)</td>
<td>24239</td>
</tr>
<tr>
<td>Autolytus cornutus (269)</td>
<td>19212</td>
</tr>
<tr>
<td>Autolytus spp. (388)</td>
<td>19202</td>
</tr>
<tr>
<td>Axinopsida serricata (24)</td>
<td>22203</td>
</tr>
<tr>
<td>Balanus hesperius (201)</td>
<td>23730</td>
</tr>
<tr>
<td>Barantolla americana (236)</td>
<td>40351</td>
</tr>
<tr>
<td>Bathyclopea daltonae (197)</td>
<td>40427</td>
</tr>
<tr>
<td>Bathyleberis sp. #1 (194)</td>
<td>40411</td>
</tr>
<tr>
<td>Bathymedon? sp. #1 (131)</td>
<td>24134</td>
</tr>
<tr>
<td>Bathymedon? sp. #2 (411)</td>
<td>40460</td>
</tr>
<tr>
<td>Boccardia basilaria (289)</td>
<td>40323</td>
</tr>
<tr>
<td>Ropyrella? sp. #1 (404)</td>
<td>23960</td>
</tr>
<tr>
<td>Brada pluribranchiata (470)</td>
<td>40332</td>
</tr>
<tr>
<td>Brisaster latifrons (81)</td>
<td>16108</td>
</tr>
<tr>
<td>Byblis sp. #1 (410)</td>
<td>40448</td>
</tr>
<tr>
<td>Byblis veleronis (126)</td>
<td>40044</td>
</tr>
<tr>
<td>Callianassa californiensis (547)</td>
<td>24614</td>
</tr>
<tr>
<td>Campylaspis rubromaculata (400)</td>
<td>23907</td>
</tr>
<tr>
<td>Campylaspis sp. #1 (106)</td>
<td>23908</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRF Code</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Campylaspis sp. #2 (107)</td>
<td>23909</td>
</tr>
<tr>
<td>Campylaspis sp. #3 (108)</td>
<td>23910</td>
</tr>
<tr>
<td>Campylaspis sp. #4 (582)</td>
<td>40422</td>
</tr>
<tr>
<td>Cancer gracilis? (216)</td>
<td>24929</td>
</tr>
<tr>
<td>Cancer magister (217)</td>
<td>24930</td>
</tr>
<tr>
<td>Cancer oregonensis (548)</td>
<td>24931</td>
</tr>
<tr>
<td>Capitella capitata (232)</td>
<td>19641</td>
</tr>
<tr>
<td>Capitella capitata oculata (233)</td>
<td>19649</td>
</tr>
<tr>
<td>Capitella spp. (540)</td>
<td>19654</td>
</tr>
<tr>
<td>Capitellidae sp. #1 (346)</td>
<td>40353</td>
</tr>
<tr>
<td>Capitellidae spp. (368)</td>
<td>19640</td>
</tr>
<tr>
<td>Caprella mendax (581)</td>
<td>40482</td>
</tr>
<tr>
<td>Caprella sp. #1 (532)</td>
<td>40481</td>
</tr>
<tr>
<td>Cardiomya oldroydi (42)</td>
<td>22244</td>
</tr>
<tr>
<td>Chaetodermatidae sp. #1 (49)</td>
<td>40407</td>
</tr>
<tr>
<td>Chaetodermatidae spp. (530)</td>
<td>40408</td>
</tr>
<tr>
<td>Chaetopteridae spp. (403)</td>
<td>19480</td>
</tr>
<tr>
<td>Chaetozone nr. berkeleyorum (239)</td>
<td>40331</td>
</tr>
<tr>
<td>Chaetozone setosa (237)</td>
<td>19515</td>
</tr>
<tr>
<td>Chone albocincta (481)</td>
<td>40103</td>
</tr>
<tr>
<td>Chorilla longipes (549)</td>
<td>24909</td>
</tr>
<tr>
<td>Cirratulidae spp. (240)</td>
<td>19500</td>
</tr>
<tr>
<td>Collisella digitalis? (521)</td>
<td>40366</td>
</tr>
<tr>
<td>Colurostylis occidentalis (104)</td>
<td>23906</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Compsomyax subdiaphana (56)</td>
<td>40041</td>
</tr>
<tr>
<td>Corophium brevis (492)</td>
<td>24047</td>
</tr>
<tr>
<td>Corophium sp. #1 (188)</td>
<td>24056</td>
</tr>
<tr>
<td>Corophium sp. #2 (535)</td>
<td>40450</td>
</tr>
<tr>
<td>Corophium salmonis (230)</td>
<td>24051</td>
</tr>
<tr>
<td>Corophium spinicorne (495)</td>
<td>24053</td>
</tr>
<tr>
<td>Cossura nr. laeviseta (449)</td>
<td>40290</td>
</tr>
<tr>
<td>Cossura spp. (262)</td>
<td>19131</td>
</tr>
<tr>
<td>Crangon alaskensis elongata (203)</td>
<td>24436</td>
</tr>
<tr>
<td>Crangon communis (550)</td>
<td>24450</td>
</tr>
<tr>
<td>Crangon franciscorum (520)</td>
<td>24439</td>
</tr>
<tr>
<td>Crangon munita (552)</td>
<td>24440</td>
</tr>
<tr>
<td>Crangon sp. #1 (553)</td>
<td>24452</td>
</tr>
<tr>
<td>Crangon spp. (205)</td>
<td>24446</td>
</tr>
<tr>
<td>Crangon stylirostris (204)</td>
<td>24448</td>
</tr>
<tr>
<td>Crenella decussata (44)</td>
<td>22041</td>
</tr>
<tr>
<td>Cumacea spp. (523)</td>
<td>23889</td>
</tr>
<tr>
<td>Cyclocardia ventricosa (54)</td>
<td>40086</td>
</tr>
<tr>
<td>Cylichna attonsa (1)</td>
<td>21233</td>
</tr>
<tr>
<td>Cymothoidae spp. #1 (507)</td>
<td>40446</td>
</tr>
<tr>
<td>Decamastus gracilis? (247)</td>
<td>40352</td>
</tr>
<tr>
<td>Dendraster excentricus (82)</td>
<td>16107</td>
</tr>
<tr>
<td>Dentalium rectius (68)</td>
<td>22732</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dentaliidae spp. (67)</td>
<td>22726</td>
</tr>
<tr>
<td>Diastylis alaskensis (101)</td>
<td>23903</td>
</tr>
<tr>
<td>Diastylis bidentata (100)</td>
<td>23902</td>
</tr>
<tr>
<td>Diastylis parapinulosa (504)</td>
<td>40418</td>
</tr>
<tr>
<td>Diastylis pellucida (586)</td>
<td>40417</td>
</tr>
<tr>
<td>Diastylis umatillensis (9y)</td>
<td>23901</td>
</tr>
<tr>
<td>Diastylis sp. #1 (102)</td>
<td>23904</td>
</tr>
<tr>
<td>Diastylopsis dawsoni (97)</td>
<td>23899</td>
</tr>
<tr>
<td>Diastylopsis tenuis (98)</td>
<td>23900</td>
</tr>
<tr>
<td>Doridacea sp. #1 (18)</td>
<td>40373</td>
</tr>
<tr>
<td>Dorvilleidae spp. (287)</td>
<td>19400</td>
</tr>
<tr>
<td>Dulichia sp. #1 (189)</td>
<td>24251</td>
</tr>
<tr>
<td>Echiura sp. #3 (421)</td>
<td>40485</td>
</tr>
<tr>
<td>Echiura sp. #4 (427)</td>
<td>40486</td>
</tr>
<tr>
<td>Echiura sp. #5 (533)</td>
<td>40487</td>
</tr>
<tr>
<td>Echiurida spp. (423)</td>
<td>25400</td>
</tr>
<tr>
<td>Echiurus echiurus alaskanus (73)</td>
<td>25402</td>
</tr>
<tr>
<td>Edotea sublittoralis (500)</td>
<td>40432</td>
</tr>
<tr>
<td>Eohaustorius brevicuspis (494)</td>
<td>40451</td>
</tr>
<tr>
<td>Eohaustorius sencillus (155)</td>
<td>24096</td>
</tr>
<tr>
<td>Eohaustorius washingtonianus (156)</td>
<td>24097</td>
</tr>
<tr>
<td>Epitonium tinctum (16)</td>
<td>40376</td>
</tr>
<tr>
<td>Eteone californica? (245)</td>
<td>19137</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Eteone longa (307)</td>
<td>19160</td>
</tr>
<tr>
<td>Eteone (Mysta) barbata (231)</td>
<td>40296</td>
</tr>
<tr>
<td>Eteone sp. #1 (393)</td>
<td>40294</td>
</tr>
<tr>
<td>Eteone sp. #2 (224)</td>
<td>40295</td>
</tr>
<tr>
<td>Eteone sp. #5 (314)</td>
<td>40297</td>
</tr>
<tr>
<td>Eteone sp. #6 (244)</td>
<td>40298</td>
</tr>
<tr>
<td>Eteone sp. #7 (271)</td>
<td>40299</td>
</tr>
<tr>
<td>Eteone spp. (246)</td>
<td>19155</td>
</tr>
<tr>
<td>Eudorella pacifica (109)</td>
<td>23914</td>
</tr>
<tr>
<td>Eudorellopsis longirostris (103)</td>
<td>23905</td>
</tr>
<tr>
<td>Fulalia leavicornuta (587)</td>
<td>40468</td>
</tr>
<tr>
<td>Eumida sanguinea (250)</td>
<td>19149</td>
</tr>
<tr>
<td>Eumida spp. (285)</td>
<td>40492</td>
</tr>
<tr>
<td>Eunoe sp. #1 (372)</td>
<td>40196</td>
</tr>
<tr>
<td>Euphausia pacifica (569)</td>
<td>24360</td>
</tr>
<tr>
<td>Euphilomedes carcharodonta (193)</td>
<td>23299</td>
</tr>
<tr>
<td>Euphilomedes producta (574)</td>
<td>40412</td>
</tr>
<tr>
<td>Exogone lourei (478)</td>
<td>40110</td>
</tr>
<tr>
<td>Exogone spp. (432)</td>
<td>19217</td>
</tr>
<tr>
<td>Flabelligeridae spp. (251)</td>
<td>19520</td>
</tr>
<tr>
<td>Gammaridea sp. #2 (366)</td>
<td>40476</td>
</tr>
<tr>
<td>Gastropoda sp. #1 (578)</td>
<td>40365</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Gastropoda spp. (34)</td>
<td>21100</td>
</tr>
<tr>
<td>Gastropteron pacificum (507)</td>
<td>40369</td>
</tr>
<tr>
<td>Grattyana ciliata (545)</td>
<td>40283</td>
</tr>
<tr>
<td>Glycera capitata (252)</td>
<td>19263</td>
</tr>
<tr>
<td>Glycera convoluta (385)</td>
<td>40311</td>
</tr>
<tr>
<td>Glycera sp. #1 (426)</td>
<td>40312</td>
</tr>
<tr>
<td>Glycera spp. (253)</td>
<td>19365</td>
</tr>
<tr>
<td>Glycine sp. picta (408)</td>
<td>40149</td>
</tr>
<tr>
<td>Glycine sp. #2 (256)</td>
<td>40313</td>
</tr>
<tr>
<td>Glycine sp. (258)</td>
<td>19284</td>
</tr>
<tr>
<td>Gnorrhaphithyra oregonensis (502)</td>
<td>23921</td>
</tr>
<tr>
<td>Golfingia macginitiei (69)</td>
<td>25352</td>
</tr>
<tr>
<td>Golfingia sp. #1 (70)</td>
<td>25353</td>
</tr>
<tr>
<td>Goniada maculata (259)</td>
<td>19287</td>
</tr>
<tr>
<td>Goniadidae spp. (407)</td>
<td>19280</td>
</tr>
<tr>
<td>Gorgonocephalus caryi (572)</td>
<td>17615</td>
</tr>
<tr>
<td>Guerne? sp. #1 (413)</td>
<td>40469</td>
</tr>
<tr>
<td>Haploscoloplos elongatus (261)</td>
<td>19421</td>
</tr>
<tr>
<td>Harmothoe nr. lunulata (465)</td>
<td>19027</td>
</tr>
<tr>
<td>Hemiarchthus abdominalis (506)</td>
<td>40441</td>
</tr>
<tr>
<td>Hemilamprops californensis (96)</td>
<td>23898</td>
</tr>
<tr>
<td>Hesionidae sp. #1 (414)</td>
<td>40288</td>
</tr>
<tr>
<td>Hesionidae spp. (263)</td>
<td>19120</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Hesionidae sp. #2 (420)</td>
<td>40289</td>
</tr>
<tr>
<td>Hesperonoe sp. #1 (466)</td>
<td>40282</td>
</tr>
<tr>
<td>Hesiospina sp. #1 (265)</td>
<td>40206</td>
</tr>
<tr>
<td>Heteromastus filobranchus (264)</td>
<td>19651</td>
</tr>
<tr>
<td>Heteromastus sp. #1 (296)</td>
<td>40350</td>
</tr>
<tr>
<td>Heteromastus spp. (394)</td>
<td>19653</td>
</tr>
<tr>
<td>Heterophoxus oculatus? (152)</td>
<td>24158</td>
</tr>
<tr>
<td>Hippomedon denticulatus (169)</td>
<td>24123</td>
</tr>
<tr>
<td>Hippomedon sp. #1 (178)</td>
<td>40453</td>
</tr>
<tr>
<td>Hippomedon wecomus (170)</td>
<td>24124</td>
</tr>
<tr>
<td>Hirudinea spp. (543)</td>
<td>20271</td>
</tr>
<tr>
<td>Huxleyia munita (59)</td>
<td>21991</td>
</tr>
<tr>
<td>Hydrozoa spp. (367)</td>
<td>11501</td>
</tr>
<tr>
<td>Hyperiidea sp. #1 (529)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Idotea fewksei (511)</td>
<td>40433</td>
</tr>
<tr>
<td>Isaeidae sp. #1 (527)</td>
<td>40470</td>
</tr>
<tr>
<td>Ischyrocerus pelagops (162)</td>
<td>24108</td>
</tr>
<tr>
<td>Isocirrus sp. #1 (453)</td>
<td>40338</td>
</tr>
<tr>
<td>Jassa? sp. #1 (493)</td>
<td>40452</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamprops sp. #1 (94)</td>
<td>23916</td>
</tr>
<tr>
<td>Lamprops sp. #2 (105)</td>
<td>40420</td>
</tr>
</tbody>
</table>

340
<table>
<thead>
<tr>
<th>Species (MCR Code)</th>
<th>DMRF Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanassa sp. #1 (349)</td>
<td>40358</td>
</tr>
<tr>
<td>Langerhansia heterochaeta (479)</td>
<td>40305</td>
</tr>
<tr>
<td>Leonice cirrata (266)</td>
<td>19442</td>
</tr>
<tr>
<td>Lepidasthenia berkeleyae (480)</td>
<td>40100</td>
</tr>
<tr>
<td>Lepidasthenia longicirrata (474)</td>
<td>40603</td>
</tr>
<tr>
<td>Lepidonotus sp. #1 (268)</td>
<td>19034</td>
</tr>
<tr>
<td>Leptognatha nr. longiremis (77)</td>
<td>40042</td>
</tr>
<tr>
<td>Leucon sp. #1 (528)</td>
<td>40424</td>
</tr>
<tr>
<td>Limnoria lignorum? (503)</td>
<td>23924</td>
</tr>
<tr>
<td>Listriella spp. (183)</td>
<td>24119</td>
</tr>
<tr>
<td>Lucinoma annulata (55)</td>
<td>40087</td>
</tr>
<tr>
<td>Luidia foliolata (570)</td>
<td>40265</td>
</tr>
<tr>
<td>Lumbrineris bicirrata (329)</td>
<td>19341</td>
</tr>
<tr>
<td>Lumbrineris latreilli (273)</td>
<td>19349</td>
</tr>
<tr>
<td>Lumbrineris luti (275)</td>
<td>19350</td>
</tr>
<tr>
<td>Lumbrineris cf. longensis (274)</td>
<td>19359</td>
</tr>
<tr>
<td>Lumbrineris similabris (276)</td>
<td>19351</td>
</tr>
<tr>
<td>Lumbrineris minima (454)</td>
<td>40315</td>
</tr>
<tr>
<td>Lumbrineris sp. (277)</td>
<td>19347</td>
</tr>
<tr>
<td>Lumbrineris zonata (436)</td>
<td>19345</td>
</tr>
<tr>
<td>Lyonsia Californica (39)</td>
<td>40390</td>
</tr>
<tr>
<td>Lyonsia inflata? (40)</td>
<td>40391</td>
</tr>
<tr>
<td>Lyonsia sp. #2 (41)</td>
<td>22506</td>
</tr>
<tr>
<td>Lysianassidae sp. #1 (177)</td>
<td>40458</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lysianassidae sp. #2 (585)</td>
<td>40459</td>
</tr>
<tr>
<td>Lysianassidae spp. (371)</td>
<td>24122</td>
</tr>
<tr>
<td>Macoma balthica? (391)</td>
<td>22324</td>
</tr>
<tr>
<td>Macoma calcera (124)</td>
<td>22322</td>
</tr>
<tr>
<td>Macoma carlottensis (32)</td>
<td>22304</td>
</tr>
<tr>
<td>Macoma moesta alaskana (29)</td>
<td>22302</td>
</tr>
<tr>
<td>Macoma nasuta (31)</td>
<td>22323</td>
</tr>
<tr>
<td>Macoma elimata? (33)</td>
<td>40386</td>
</tr>
<tr>
<td>Macoma sp. #2 (164)</td>
<td>22306</td>
</tr>
<tr>
<td>Macoma spp. (431)</td>
<td>22326</td>
</tr>
<tr>
<td>Magelona longicornis (278)</td>
<td>19467</td>
</tr>
<tr>
<td>Magelona pitelkai (280)</td>
<td>40326</td>
</tr>
<tr>
<td>Magelona sacculata (279)</td>
<td>40150</td>
</tr>
<tr>
<td>Megelona spp. (281)</td>
<td>19463</td>
</tr>
<tr>
<td>Maldane sarsi (282)</td>
<td>19562</td>
</tr>
<tr>
<td>Maldanidae sp. #4 (286)</td>
<td>40342</td>
</tr>
<tr>
<td>Maldanidae sp. #14 (444)</td>
<td>40343</td>
</tr>
<tr>
<td>Maldanidae sp. #19 (299)</td>
<td>40344</td>
</tr>
<tr>
<td>Maldanidae sp. #20 (241)</td>
<td>40345</td>
</tr>
<tr>
<td>Maldanidae sp. #21 (247)</td>
<td>40346</td>
</tr>
<tr>
<td>Maldanidae spp. (293)</td>
<td>19560</td>
</tr>
<tr>
<td>Mandibulophoxus uncirostratus (153)</td>
<td>24159</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mayerella banskia? (190)</td>
<td>40479</td>
</tr>
<tr>
<td>Mediomastus californiensis (294)</td>
<td>19643</td>
</tr>
<tr>
<td>Melinna spp. (396)</td>
<td>19706</td>
</tr>
<tr>
<td>Melinna oculata (297)</td>
<td>19708</td>
</tr>
<tr>
<td>Melita desdichada? (179)</td>
<td>24084</td>
</tr>
<tr>
<td>Melita oregonensis (180)</td>
<td>24086</td>
</tr>
<tr>
<td>Mesochaetopterus sp. #1 (399)</td>
<td>40327</td>
</tr>
<tr>
<td>Mesolamprops sp. #1 (95)</td>
<td>23897</td>
</tr>
<tr>
<td>Metopa sp. #1 (184)</td>
<td>40463</td>
</tr>
<tr>
<td>Metopa sp. #2 (159)</td>
<td>40464</td>
</tr>
<tr>
<td>Metopella sp. #1 (517)</td>
<td>40466</td>
</tr>
<tr>
<td>Misc.-unknown #1 (362)</td>
<td></td>
</tr>
<tr>
<td>Misc.-unknown #2 (363)</td>
<td></td>
</tr>
<tr>
<td>Misc.-unknown #3 (364)</td>
<td></td>
</tr>
<tr>
<td>Misc.-unknown #4 (375)</td>
<td></td>
</tr>
<tr>
<td>Misc.-unknown #5 (376)</td>
<td></td>
</tr>
<tr>
<td>Misc.-unknown #6 (580)</td>
<td></td>
</tr>
<tr>
<td>Mitrella gouldii (2)</td>
<td>21596</td>
</tr>
<tr>
<td>Molpadia intermedia? (79)</td>
<td>16604</td>
</tr>
<tr>
<td>Monoculodes sp. #1 (128)</td>
<td>24137</td>
</tr>
<tr>
<td>Monoculodes sp. #2 (129)</td>
<td>24138</td>
</tr>
<tr>
<td>Monoculodes spinipes (127)</td>
<td>24136</td>
</tr>
<tr>
<td>Monoculodes zernovi? (130)</td>
<td>24141</td>
</tr>
<tr>
<td>Munida quadrispina (218)</td>
<td>24626</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Munisingio cirrifera (335)</td>
<td></td>
</tr>
<tr>
<td>Husculus laevigata (28)</td>
<td></td>
</tr>
<tr>
<td>Musculus sp. #1 (43)</td>
<td></td>
</tr>
<tr>
<td>Musculus sp. #2 (75)</td>
<td></td>
</tr>
<tr>
<td>Myriochele heeri (437)</td>
<td></td>
</tr>
<tr>
<td>Myriochele oculata (300)</td>
<td></td>
</tr>
<tr>
<td>Myriochele spp. (483)</td>
<td></td>
</tr>
<tr>
<td>Mysella tumida (57)</td>
<td></td>
</tr>
<tr>
<td>Mysidacea spp. (120)</td>
<td></td>
</tr>
<tr>
<td>Mysini spp. (117)</td>
<td></td>
</tr>
<tr>
<td>Nassarius fossatus (3)</td>
<td>21626</td>
</tr>
<tr>
<td>Nassarius mendicus (4)</td>
<td>21627</td>
</tr>
<tr>
<td>Nassarius spp. (5)</td>
<td>21625</td>
</tr>
<tr>
<td>Nebalia bipes (76)</td>
<td>40090</td>
</tr>
<tr>
<td>Nectocrangon alaskensis (554)</td>
<td>24451</td>
</tr>
<tr>
<td>Nematoda spp. (192)</td>
<td>14000</td>
</tr>
<tr>
<td>Nemertea sp. #1 (438)</td>
<td>40267</td>
</tr>
<tr>
<td>Nemertea sp. #2 (446)</td>
<td>40268</td>
</tr>
<tr>
<td>Nemertea sp. #3 (451)</td>
<td>40269</td>
</tr>
<tr>
<td>Nemertea sp. #4 (456)</td>
<td>40270</td>
</tr>
<tr>
<td>Nemertea sp. #5 (460)</td>
<td>40271</td>
</tr>
<tr>
<td>Nemertea sp. #6 (463)</td>
<td>40272</td>
</tr>
<tr>
<td>Nemertea sp. #7 (471)</td>
<td>40273</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Nemertea sp. #8 (472)</td>
<td>40274</td>
</tr>
<tr>
<td>Nemertea sp. #9 (473)</td>
<td>40275</td>
</tr>
<tr>
<td>Nemertea sp. #11 (475)</td>
<td>40277</td>
</tr>
<tr>
<td>Nemertea sp. #12 (485)</td>
<td>40278</td>
</tr>
<tr>
<td>Nemertea sp. #13 (510)</td>
<td>40279</td>
</tr>
<tr>
<td>Nemertea sp. #14 (536)</td>
<td>40280</td>
</tr>
<tr>
<td>Nemertea spp. (361)</td>
<td>18700</td>
</tr>
<tr>
<td>Neoaaphitrite robusta (267)</td>
<td>40356</td>
</tr>
<tr>
<td>Neomeniida sp. #1 (534)</td>
<td>40406</td>
</tr>
<tr>
<td>Neomysis franciscorum (111)</td>
<td>23885</td>
</tr>
<tr>
<td>Neomysis kadiakensis (112)</td>
<td>23865</td>
</tr>
<tr>
<td>Neomysis sp. #1 (116)</td>
<td>23877</td>
</tr>
<tr>
<td>Neomysis sp. (118)</td>
<td>23875</td>
</tr>
<tr>
<td>Nephtyidae spp. (295)</td>
<td>19240</td>
</tr>
<tr>
<td>Nephtys caeca (301)</td>
<td>19241</td>
</tr>
<tr>
<td>Nephtys caecoides (302)</td>
<td>19242</td>
</tr>
<tr>
<td>Nephtys californiensis (303)</td>
<td>19243</td>
</tr>
<tr>
<td>Nephtys cornuta (284)</td>
<td>40308</td>
</tr>
<tr>
<td>Nephtys cornuta franciscanum (464)</td>
<td>40309</td>
</tr>
<tr>
<td>Nephtys ferruginea (390)</td>
<td>19244</td>
</tr>
<tr>
<td>Nephtys glabra (304)</td>
<td>19251</td>
</tr>
<tr>
<td>Nephtys rickettsi (440)</td>
<td>40310</td>
</tr>
<tr>
<td>Nephtys spp. (373)</td>
<td>19247</td>
</tr>
<tr>
<td>Neptuneidae sp. #1 (14)</td>
<td>40379</td>
</tr>
<tr>
<td>Nereidae spp. (306)</td>
<td>19220</td>
</tr>
</tbody>
</table>
Table C-IIB (continued)

<table>
<thead>
<tr>
<th>Species (MCR Code)</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opheliidae spp. (342)</td>
<td>19540</td>
</tr>
<tr>
<td>Ophelina acuminata (220)</td>
<td>40334</td>
</tr>
<tr>
<td>Ophelina sp. #1 (541)</td>
<td>40335</td>
</tr>
<tr>
<td>Ophiodermella cancellata (15)</td>
<td>40301</td>
</tr>
<tr>
<td>Ophiodermella sp. #1 (351)</td>
<td>40382</td>
</tr>
<tr>
<td>Ophiomusium jolliensis (573)</td>
<td>17616</td>
</tr>
<tr>
<td>Ophiura lutkeni (86)</td>
<td>17610</td>
</tr>
<tr>
<td>Ophiura sarsii (91)</td>
<td>17614</td>
</tr>
<tr>
<td>Ophiura spp. (92)</td>
<td>17612</td>
</tr>
<tr>
<td>Ophiurida spp. (88)</td>
<td>17611</td>
</tr>
<tr>
<td>Opisa tridentata (173)</td>
<td>24126</td>
</tr>
<tr>
<td>Opistobranchia sp. #1 (234)</td>
<td>40371</td>
</tr>
<tr>
<td>Opistobranchia sp. #2 (249)</td>
<td>40372</td>
</tr>
<tr>
<td>Orbinia sp. #1 (467)</td>
<td>40092</td>
</tr>
<tr>
<td>Orbiniidae spp. (315)</td>
<td>19420</td>
</tr>
<tr>
<td>Orchomene pacifica (172)</td>
<td>40454</td>
</tr>
<tr>
<td>Orchomene sp. #2 (486)</td>
<td>40455</td>
</tr>
<tr>
<td>Orbitella rugifera (47)</td>
<td>40393</td>
</tr>
<tr>
<td>Owenia collaris (316)</td>
<td>40157</td>
</tr>
<tr>
<td>Oweniidae spp. (397)</td>
<td>19580</td>
</tr>
<tr>
<td>Pachynus barnardi? (174)</td>
<td>24129</td>
</tr>
<tr>
<td>Pachynus chelatum? (171)</td>
<td>40456</td>
</tr>
<tr>
<td>Paguridae spp. (214)</td>
<td>24650</td>
</tr>
</tbody>
</table>

347
<table>
<thead>
<tr>
<th>Species (MCR Code)</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nereis zonata (398)</td>
<td>19231</td>
</tr>
<tr>
<td>Nereis? spp. (308)</td>
<td>19232</td>
</tr>
<tr>
<td>Nicippe tumida (175)</td>
<td>40457</td>
</tr>
<tr>
<td>Ninoe gemmea (309)</td>
<td>19346</td>
</tr>
<tr>
<td>Nothria geophiliformis (311)</td>
<td>40314</td>
</tr>
<tr>
<td>Nothria iridescens (310)</td>
<td>19304</td>
</tr>
<tr>
<td>Nothria spp. (235)</td>
<td>19306</td>
</tr>
<tr>
<td>Notocirrus californiensis (238)</td>
<td>40316</td>
</tr>
<tr>
<td>Notomastus hemipodus? (312)</td>
<td>19644</td>
</tr>
<tr>
<td>Notomastus lineatus (298)</td>
<td>40349</td>
</tr>
<tr>
<td>Nucula tenuis (20)</td>
<td>21933</td>
</tr>
<tr>
<td>Nuculana hamata (23)</td>
<td>40384</td>
</tr>
<tr>
<td>Nuculanidae spp. (417)</td>
<td>21960</td>
</tr>
<tr>
<td>Octopus sp. #1 (575)</td>
<td>40409</td>
</tr>
<tr>
<td>Odostomia sp. #1 (6)</td>
<td>21270</td>
</tr>
<tr>
<td>Odostomia spp. (539)</td>
<td>21265</td>
</tr>
<tr>
<td>Oenoptota tirrucula? (13)</td>
<td>40380</td>
</tr>
<tr>
<td>Oligochaeta spp. (422)</td>
<td>19900</td>
</tr>
<tr>
<td>Olivella baetica (7)</td>
<td>21655</td>
</tr>
<tr>
<td>Olivella biplicata (8)</td>
<td>21656</td>
</tr>
<tr>
<td>Olivella pycna (9)</td>
<td>21657</td>
</tr>
<tr>
<td>Olivella spp. (514)</td>
<td>21654</td>
</tr>
<tr>
<td>Ophelia sp. #1 (313)</td>
<td>40151</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Paguristes turgidis (555)</td>
<td>24654</td>
</tr>
<tr>
<td>Pagurus aleutieus? (556)</td>
<td>40483</td>
</tr>
<tr>
<td>Pagurus armatus (212)</td>
<td>24657</td>
</tr>
<tr>
<td>Pagurus caurinus (513)</td>
<td>40484</td>
</tr>
<tr>
<td>Pagurus ochotensis (210)</td>
<td>24671</td>
</tr>
<tr>
<td>Pagurus quayleyi (211)</td>
<td>24672</td>
</tr>
<tr>
<td>Pagurus spp. (213)</td>
<td>24678</td>
</tr>
<tr>
<td>Pananthura? sp. #1 (504)</td>
<td>40443</td>
</tr>
<tr>
<td>Pandalus danae (557)</td>
<td>24417</td>
</tr>
<tr>
<td>Pandalus jordani (558)</td>
<td>24420</td>
</tr>
<tr>
<td>Pandora bilirata? (53)</td>
<td>22605</td>
</tr>
<tr>
<td>Pandora filosa (50)</td>
<td>22603</td>
</tr>
<tr>
<td>Pandora grandis (51)</td>
<td>22604</td>
</tr>
<tr>
<td>Pandora punctata (52)</td>
<td>22609</td>
</tr>
<tr>
<td>Paracaudina chilensis (78)</td>
<td>16601</td>
</tr>
<tr>
<td>Paranaetia polynoides (551)</td>
<td>19153</td>
</tr>
<tr>
<td>Parandalia fauveli (435)</td>
<td>40359</td>
</tr>
<tr>
<td>Paraonella playtbranchia (317)</td>
<td>40154</td>
</tr>
<tr>
<td>Paronidae spp. (291)</td>
<td>19110</td>
</tr>
<tr>
<td>Paraonis gracilis oculatus (442)</td>
<td>40095</td>
</tr>
<tr>
<td>Paraphoxus abronius? (135)</td>
<td>24146</td>
</tr>
<tr>
<td>Paraphoxus epistomus (137)</td>
<td>24148</td>
</tr>
<tr>
<td>Paraphoxus fatigans (143)</td>
<td>24163</td>
</tr>
<tr>
<td>Paraphoxus heterocuspidatus (138)</td>
<td>24149</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Paraphoxus lucubran? 146</td>
<td>24150</td>
</tr>
<tr>
<td>Paraphoxus milleri 145</td>
<td>24151</td>
</tr>
<tr>
<td>Paraphoxus obtusidens 139</td>
<td>24152</td>
</tr>
<tr>
<td>Paraphoxus obtusidens major 140</td>
<td>24153</td>
</tr>
<tr>
<td>Paraphoxus sp. #1 147</td>
<td>24155</td>
</tr>
<tr>
<td>Paraphoxus sp. #2 148</td>
<td>24156</td>
</tr>
<tr>
<td>Paraphoxus sp. #3 149</td>
<td>24167</td>
</tr>
<tr>
<td>Paraphoxus sp. #4 150</td>
<td>40043</td>
</tr>
<tr>
<td>Paraphoxus sp. #5 362</td>
<td>40499</td>
</tr>
<tr>
<td>Paraphoxus spp. 151</td>
<td>24157</td>
</tr>
<tr>
<td>Paraphoxus stenodes? 144</td>
<td>24164</td>
</tr>
<tr>
<td>Paraphoxus tridentatus 487</td>
<td>40461</td>
</tr>
<tr>
<td>Paraphoxus variatus 142</td>
<td>24154</td>
</tr>
<tr>
<td>Paraphoxus vigitegus 141</td>
<td>24162</td>
</tr>
<tr>
<td>Parapleutes pugettensis 491</td>
<td>24173</td>
</tr>
<tr>
<td>Paraprionospio pinnata 337</td>
<td>19456</td>
</tr>
<tr>
<td>Paraselloidea sp. #1 499</td>
<td>40444</td>
</tr>
<tr>
<td>Pardaliscella sp. #1 186</td>
<td>40472</td>
</tr>
<tr>
<td>Pectinaria (Cistenides) granulata 319</td>
<td>40354</td>
</tr>
<tr>
<td>Pectinaria californiensis 320</td>
<td>19661</td>
</tr>
<tr>
<td>Pectinaria sp. #1 418</td>
<td>19664</td>
</tr>
<tr>
<td>Pectinaria spp. 321</td>
<td>19663</td>
</tr>
<tr>
<td>Pectinidae sp. #1 577</td>
<td>40383</td>
</tr>
<tr>
<td>Pelecypoda sp. #1 60</td>
<td>40396</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Pelecypoda sp. #2 (61)</td>
<td>40397</td>
</tr>
<tr>
<td>Pelecypoda sp. #3 (62)</td>
<td>40398</td>
</tr>
<tr>
<td>Pelecypoda sp. #4 (415)</td>
<td>40399</td>
</tr>
<tr>
<td>Pelecypoda sp. #7 (63)</td>
<td>40400</td>
</tr>
<tr>
<td>Pelecypoda sp. #9 (526)</td>
<td>40401</td>
</tr>
<tr>
<td>Pelecypoda sp. #10 (374)</td>
<td>40402</td>
</tr>
<tr>
<td>Pelecypoda sp. #11 (64)</td>
<td>40403</td>
</tr>
<tr>
<td>Pelecypoda sp. #15 (66)</td>
<td>40404</td>
</tr>
<tr>
<td>Pelecypoda sp. #20 (519)</td>
<td>40405</td>
</tr>
<tr>
<td>Pelecypoda sp. (45)</td>
<td>21900</td>
</tr>
<tr>
<td>Pentamera sp. #1 (80)</td>
<td>16603</td>
</tr>
<tr>
<td>Pentidotea oculata (501)</td>
<td>40414</td>
</tr>
<tr>
<td>Pherusa papillata (468)</td>
<td>40333</td>
</tr>
<tr>
<td>Pholoe minuta (322)</td>
<td>19601</td>
</tr>
<tr>
<td>Phoronis psammophila? (419)</td>
<td>40488</td>
</tr>
<tr>
<td>Photis brevipes (157)</td>
<td>24325</td>
</tr>
<tr>
<td>Photis californica? (160)</td>
<td>24326</td>
</tr>
<tr>
<td>Photis lacia (158)</td>
<td>24328</td>
</tr>
<tr>
<td>Photis spp. (161)</td>
<td>24344</td>
</tr>
<tr>
<td>Phoxocephalus homilis (515)</td>
<td>40462</td>
</tr>
<tr>
<td>Phylo felix (326)</td>
<td>40321</td>
</tr>
<tr>
<td>Phyllocidacea sp. #1 (248)</td>
<td>40302</td>
</tr>
<tr>
<td>Phyllocidacea sp. #2 (257)</td>
<td>40303</td>
</tr>
<tr>
<td>Phyllodocidae spp. (325)</td>
<td>19136</td>
</tr>
<tr>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Pilargidae spp. (327)</td>
<td>19860</td>
</tr>
<tr>
<td>Pilargis berkeleyae (434)</td>
<td>40360</td>
</tr>
<tr>
<td>Pinnixa littoralis (542)</td>
<td>24966</td>
</tr>
<tr>
<td>Pinnixa occidentalis (559)</td>
<td>24967</td>
</tr>
<tr>
<td>Pinnixa sp. #1 (207)</td>
<td>24961</td>
</tr>
<tr>
<td>Pinnixa sp. #2 (208)</td>
<td>24962</td>
</tr>
<tr>
<td>Pinnixa sp. #3 (209)</td>
<td>24963</td>
</tr>
<tr>
<td>Pinnixa spp. (215)</td>
<td>24970</td>
</tr>
<tr>
<td>Pisaster brevispinus (571)</td>
<td>40266</td>
</tr>
<tr>
<td>Pista cristata (328)</td>
<td>19735</td>
</tr>
<tr>
<td>Pista moorei (330)</td>
<td>19736</td>
</tr>
<tr>
<td>Pista spp. (441)</td>
<td>19734</td>
</tr>
<tr>
<td>Pleurogonium rubicundum? (199)</td>
<td>40437</td>
</tr>
<tr>
<td>Pleusymtes coquilla (182)</td>
<td>24169</td>
</tr>
<tr>
<td>Podarkeopsis brevipalpa (459)</td>
<td>40287</td>
</tr>
<tr>
<td>Polinices pallidus (17)</td>
<td>21545</td>
</tr>
<tr>
<td>Polychaeta spp. (369)</td>
<td>19001</td>
</tr>
<tr>
<td>Polycirrus spp. (331)</td>
<td>19729</td>
</tr>
<tr>
<td>Polydora caulleryi (288)</td>
<td>19445</td>
</tr>
<tr>
<td>Polydora sp. #2 (292)</td>
<td>40322</td>
</tr>
<tr>
<td>Polydora app. (332)</td>
<td>19451</td>
</tr>
<tr>
<td>Polynoe sp. #1 (546)</td>
<td>40284</td>
</tr>
<tr>
<td>Polynoidae spp. (333)</td>
<td>19020</td>
</tr>
<tr>
<td>Praxillella affinis pacifica (445)</td>
<td>40339</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Praxillella gracilis (334)</td>
<td>40340</td>
</tr>
<tr>
<td>Priapulus caudata (72)</td>
<td>25454</td>
</tr>
<tr>
<td>Prionospio malmgreni (336)</td>
<td>19457</td>
</tr>
<tr>
<td>Prionospio spp. (338)</td>
<td>19459</td>
</tr>
<tr>
<td>Proboloides sp. #1 (412)</td>
<td>40465</td>
</tr>
<tr>
<td>Propeamussium davidsoni (579)</td>
<td>40395</td>
</tr>
<tr>
<td>Protomedeia sp. #1 (163)</td>
<td>24330</td>
</tr>
<tr>
<td>Protomedeia sp. #2 (165)</td>
<td>24331</td>
</tr>
<tr>
<td>Protomedeia zotea (166)</td>
<td>24332</td>
</tr>
<tr>
<td>Psephidia lordi (58)</td>
<td>40088</td>
</tr>
<tr>
<td>Pycnogonida sp. #1 (381)</td>
<td>40415</td>
</tr>
<tr>
<td>Rhachotropis oculata (402)</td>
<td>40474</td>
</tr>
<tr>
<td>Rhodine bitorquata (339)</td>
<td>40341</td>
</tr>
<tr>
<td>Rossia pacifica (576)</td>
<td>22811</td>
</tr>
<tr>
<td>Rutiderma sp. #1 (424)</td>
<td>40414</td>
</tr>
<tr>
<td>Sabellidae spp. (405)</td>
<td>19740</td>
</tr>
<tr>
<td>Saduria entomon (508)</td>
<td>40435</td>
</tr>
<tr>
<td>Scalibregma inflatum (409)</td>
<td>19803</td>
</tr>
<tr>
<td>Schistomaringos annulata (458)</td>
<td>40320</td>
</tr>
<tr>
<td>Sclerodoncha trituberculata (195)</td>
<td>23301</td>
</tr>
<tr>
<td>Scolelepsis cirratulus (384)</td>
<td>40325</td>
</tr>
<tr>
<td>Scoloplos armiger (341)</td>
<td>19427</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Scoloplos spp. (305)</td>
<td>19429</td>
</tr>
<tr>
<td>Sergestes similis (560)</td>
<td>24462</td>
</tr>
<tr>
<td>Sigalionidae spp. (484)</td>
<td>19055</td>
</tr>
<tr>
<td>Sigambra tentaculata (450)</td>
<td>19867</td>
</tr>
<tr>
<td>Siligua patula (27)</td>
<td>22351</td>
</tr>
<tr>
<td>Sipunculida spp. (71)</td>
<td>25350</td>
</tr>
<tr>
<td>Sphaerodopsis sphaerulifer (469)</td>
<td>40104</td>
</tr>
<tr>
<td>Sphaerodoridae spp. (461)</td>
<td>40105</td>
</tr>
<tr>
<td>Spio filicornis (343)</td>
<td>40037</td>
</tr>
<tr>
<td>Spiochaetopterus costarum (352)</td>
<td>40328</td>
</tr>
<tr>
<td>Spionidae spp. (370)</td>
<td>19430</td>
</tr>
<tr>
<td>Spiophanes berkeleyorum (345)</td>
<td>40155</td>
</tr>
<tr>
<td>Spiophanes bombyx (344)</td>
<td>19453</td>
</tr>
<tr>
<td>Spirontocaris avina (561)</td>
<td>24433</td>
</tr>
<tr>
<td>Spirontocaris barbata (562)</td>
<td>40046</td>
</tr>
<tr>
<td>Spirontocaris cristata (564)</td>
<td>24430</td>
</tr>
<tr>
<td>Spirontocaris gracilis (206)</td>
<td>24432</td>
</tr>
<tr>
<td>Spirontocaris lamellicornis (565)</td>
<td>40047</td>
</tr>
<tr>
<td>Spirontocaris pusiola? (567)</td>
<td>40048</td>
</tr>
<tr>
<td>Spirontocaris suckleyi (568)</td>
<td>40050</td>
</tr>
<tr>
<td>Spirontocaris spp. (583)</td>
<td>40049</td>
</tr>
<tr>
<td>Stenothoe? sp. #1 (498)</td>
<td>24182</td>
</tr>
<tr>
<td>Stenothoidae sp. #1 (185)</td>
<td>40467</td>
</tr>
<tr>
<td>Stenothoidae spp. (516)</td>
<td>24176</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Stenothoides angusta (588)</td>
<td>40468</td>
</tr>
<tr>
<td>Sternaspis fossor (347)</td>
<td>40116</td>
</tr>
<tr>
<td>Sthenelais tertiaiglabra (348)</td>
<td>19068</td>
</tr>
<tr>
<td>Syllidae spp. (350)</td>
<td>19200</td>
</tr>
<tr>
<td>Synchelidium rectipalmum (133)</td>
<td>24142</td>
</tr>
<tr>
<td>Synchelidium shoemakeri (132)</td>
<td>24139</td>
</tr>
<tr>
<td>Synidotea angulata (196)</td>
<td>23925</td>
</tr>
<tr>
<td>Synidotea bicuspida (380)</td>
<td>40429</td>
</tr>
<tr>
<td>Synidotea sp. #2 (496)</td>
<td>40430</td>
</tr>
<tr>
<td>Synidotea sp. #3 (497)</td>
<td>40431</td>
</tr>
<tr>
<td>Tecticeps convexus (198)</td>
<td>23933</td>
</tr>
<tr>
<td>Tellina carpenteri (37)</td>
<td>22346</td>
</tr>
<tr>
<td>Tellina modesta (36)</td>
<td>22307</td>
</tr>
<tr>
<td>Tellina sp. #5 (525)</td>
<td>40387</td>
</tr>
<tr>
<td>Tellina spp. (38)</td>
<td>22329</td>
</tr>
<tr>
<td>Tellinidae sp. #1 (35)</td>
<td>40388</td>
</tr>
<tr>
<td>Tellinidae sp. #3 (48)</td>
<td>40389</td>
</tr>
<tr>
<td>Tenonia kitsapensis (476)</td>
<td>40102</td>
</tr>
<tr>
<td>Terebellidae spp. (353)</td>
<td>19720</td>
</tr>
<tr>
<td>Terebellides stroemi (447)</td>
<td>19731</td>
</tr>
<tr>
<td>Thalenessa spinosa (354)</td>
<td>40118</td>
</tr>
<tr>
<td>Tharyx multifilis (358)</td>
<td>40329</td>
</tr>
<tr>
<td>Tharyx sp. #1 (357)</td>
<td>40119</td>
</tr>
<tr>
<td>Species (MCR Code)</td>
<td>DMRF Code</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tharyx sp. #3 (443)</td>
<td>40330</td>
</tr>
<tr>
<td>Tharyx spp. (359)</td>
<td>19510</td>
</tr>
<tr>
<td>Tharyx tesselata (356)</td>
<td>19512</td>
</tr>
<tr>
<td>Thelepus setosus (318)</td>
<td>40357</td>
</tr>
<tr>
<td>Thracia sp. #1 (65)</td>
<td>40392</td>
</tr>
<tr>
<td>Thyasira flexuosa (25)</td>
<td>22205</td>
</tr>
<tr>
<td>Thysanoessa spinifera (568)</td>
<td>24374</td>
</tr>
<tr>
<td>Tomburchus? sp. #1 (531)</td>
<td>40394</td>
</tr>
<tr>
<td>Trachypollia? sp. #1 (538)</td>
<td>40377</td>
</tr>
<tr>
<td>Transennela tantilla? (46)</td>
<td>40084</td>
</tr>
<tr>
<td>Travisia brevis (482)</td>
<td>19546</td>
</tr>
<tr>
<td>Travisia gigas (360)</td>
<td>19550</td>
</tr>
<tr>
<td>Tritella pilimana (191)</td>
<td>24342</td>
</tr>
<tr>
<td>Trochochaeta franciscanum (243)</td>
<td>40364</td>
</tr>
<tr>
<td>Turbellaria sp. #1 (522)</td>
<td>40258</td>
</tr>
<tr>
<td>Turbellaria spp. (365)</td>
<td>14201</td>
</tr>
<tr>
<td>Turbonilla aurantia (10)</td>
<td>21267</td>
</tr>
<tr>
<td>Turbonilla sp. #1 (11)</td>
<td>21268</td>
</tr>
<tr>
<td>Turbonilla sp. #2 (12)</td>
<td>21269</td>
</tr>
<tr>
<td>Typosyllis alternata (477)</td>
<td>40306</td>
</tr>
<tr>
<td>Typosyllis hyalina (254)</td>
<td>40307</td>
</tr>
<tr>
<td>Typosyllis nr. hyalina (255)</td>
<td>40491</td>
</tr>
<tr>
<td>Westwoodilla caecula (134)</td>
<td>24140</td>
</tr>
</tbody>
</table>
Table C-IIB (concluded)

<table>
<thead>
<tr>
<th>Species</th>
<th>MCR Code</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoldia seminuda (21)</td>
<td></td>
<td>21968</td>
</tr>
<tr>
<td>Yoldia spp. (22)</td>
<td></td>
<td>21966</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>Cyliesa attonsa</td>
<td>21233</td>
</tr>
<tr>
<td>2</td>
<td>Mitrella gouldii</td>
<td>21596</td>
</tr>
<tr>
<td>3</td>
<td>Nassarius fossatus</td>
<td>21626</td>
</tr>
<tr>
<td>4</td>
<td>Nassarius mendicus</td>
<td>21627</td>
</tr>
<tr>
<td>5</td>
<td>Nassarius spp.</td>
<td>21625</td>
</tr>
<tr>
<td>6</td>
<td>Odostomia sp. #1</td>
<td>21270</td>
</tr>
<tr>
<td>7</td>
<td>Olivella baetica</td>
<td>21655</td>
</tr>
<tr>
<td>8</td>
<td>Olivella biplicata</td>
<td>21656</td>
</tr>
<tr>
<td>9</td>
<td>Olivella pycna</td>
<td>21657</td>
</tr>
<tr>
<td>10</td>
<td>Turbonilla aurantia</td>
<td>21267</td>
</tr>
<tr>
<td>11</td>
<td>Turbonilla sp. #1</td>
<td>21268</td>
</tr>
<tr>
<td>12</td>
<td>Turbonilla sp. #2</td>
<td>21269</td>
</tr>
<tr>
<td>13</td>
<td>Oenopota turnicula?</td>
<td>40380</td>
</tr>
<tr>
<td>14</td>
<td>Neptuneidae sp. #1</td>
<td>40379</td>
</tr>
<tr>
<td>15</td>
<td>Ophiodermella cancellata</td>
<td>40381</td>
</tr>
<tr>
<td>16</td>
<td>Epitonium tinctum</td>
<td>40376</td>
</tr>
<tr>
<td>17</td>
<td>Polinices pallidus</td>
<td>21545</td>
</tr>
<tr>
<td>18</td>
<td>Doridacea sp. #1</td>
<td>40373</td>
</tr>
<tr>
<td>19</td>
<td>Acilia castrensis</td>
<td>21931</td>
</tr>
<tr>
<td>20</td>
<td>Nucula tenuis</td>
<td>21933</td>
</tr>
<tr>
<td>21</td>
<td>Yoldia seminuda</td>
<td>21968</td>
</tr>
<tr>
<td>22</td>
<td>Yoldia spp.</td>
<td>21966</td>
</tr>
</tbody>
</table>
Table C-IIC (continued)

<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Nuculana hamata</td>
<td>40381</td>
</tr>
<tr>
<td>24</td>
<td>Axinopsid serricata</td>
<td>22203</td>
</tr>
<tr>
<td>25</td>
<td>Thysoira flexuosa</td>
<td>22205</td>
</tr>
<tr>
<td>26</td>
<td>Adontorhina cyclia</td>
<td>40083</td>
</tr>
<tr>
<td>27</td>
<td>Siliqua patula</td>
<td>22351</td>
</tr>
<tr>
<td>28</td>
<td>Musculus laevigata</td>
<td>22040</td>
</tr>
<tr>
<td>29</td>
<td>Macoma moesta alaskana</td>
<td>22302</td>
</tr>
<tr>
<td>30</td>
<td>Aglaja diomedea</td>
<td>40146</td>
</tr>
<tr>
<td>31</td>
<td>Macoma nasuta</td>
<td>22323</td>
</tr>
<tr>
<td>32</td>
<td>Macoma carlottensis</td>
<td>22304</td>
</tr>
<tr>
<td>33</td>
<td>Macoma elimata?</td>
<td>40386</td>
</tr>
<tr>
<td>34</td>
<td>Gastropoda spp.</td>
<td>21100</td>
</tr>
<tr>
<td>35</td>
<td>Tellinidae sp. #1</td>
<td>40388</td>
</tr>
<tr>
<td>36</td>
<td>Tellina modesta</td>
<td>22307</td>
</tr>
<tr>
<td>37</td>
<td>Tellina carpenteri</td>
<td>22346</td>
</tr>
<tr>
<td>38</td>
<td>Tellina spp.</td>
<td>22329</td>
</tr>
<tr>
<td>39</td>
<td>Lyonsia californica</td>
<td>40390</td>
</tr>
<tr>
<td>40</td>
<td>Lyonsia inflata?</td>
<td>40391</td>
</tr>
<tr>
<td>41</td>
<td>Lyonsia sp. #2</td>
<td>22506</td>
</tr>
<tr>
<td>42</td>
<td>Cardiomya oldroydi</td>
<td>22621</td>
</tr>
<tr>
<td>43</td>
<td>Musculus sp. #1</td>
<td>22039</td>
</tr>
<tr>
<td>44</td>
<td>Crenella decussata</td>
<td>22041</td>
</tr>
<tr>
<td>45</td>
<td>Pelaeypoda spp.</td>
<td>21900</td>
</tr>
<tr>
<td>46</td>
<td>Transennella tantilla?</td>
<td>40084</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>47</td>
<td>Orobitella rugifera</td>
<td>40393</td>
</tr>
<tr>
<td>48</td>
<td>Tellinidae sp. #3</td>
<td>40389</td>
</tr>
<tr>
<td>49</td>
<td>Chaetodermatidae sp. #1</td>
<td>40407</td>
</tr>
<tr>
<td>50</td>
<td>Pandora filosa</td>
<td>22603</td>
</tr>
<tr>
<td>51</td>
<td>Pandora grandis</td>
<td>22604</td>
</tr>
<tr>
<td>52</td>
<td>Pandora punctata</td>
<td>22609</td>
</tr>
<tr>
<td>53</td>
<td>Pandora bilirata?</td>
<td>22605</td>
</tr>
<tr>
<td>54</td>
<td>Cyclocardia ventricosa</td>
<td>40086</td>
</tr>
<tr>
<td>55</td>
<td>Lucinoma annulata</td>
<td>40087</td>
</tr>
<tr>
<td>56</td>
<td>Compsomyax subdiaphana</td>
<td>40041</td>
</tr>
<tr>
<td>57</td>
<td>Mysella tumida</td>
<td>22574</td>
</tr>
<tr>
<td>58</td>
<td>Psephidia lordi</td>
<td>40088</td>
</tr>
<tr>
<td>59</td>
<td>Huxleyia munita</td>
<td>21991</td>
</tr>
<tr>
<td>60</td>
<td>Pelecypoda sp. #1</td>
<td>40396</td>
</tr>
<tr>
<td>61</td>
<td>Pelecypoda sp. #2</td>
<td>40397</td>
</tr>
<tr>
<td>62</td>
<td>Pelecypoda sp. #3</td>
<td>40398</td>
</tr>
<tr>
<td>63</td>
<td>Pelecypoda sp. #7</td>
<td>40400</td>
</tr>
<tr>
<td>64</td>
<td>Pelecypoda sp. #11</td>
<td>40403</td>
</tr>
<tr>
<td>65</td>
<td>Thracia sp. #1</td>
<td>40392</td>
</tr>
<tr>
<td>66</td>
<td>Pelecypoda sp. 15</td>
<td>40404</td>
</tr>
<tr>
<td>67</td>
<td>Dentillidae spp.</td>
<td>22726</td>
</tr>
<tr>
<td>68</td>
<td>Dentillum rectius</td>
<td>22732</td>
</tr>
<tr>
<td>69</td>
<td>Golfingia spp.</td>
<td>25352</td>
</tr>
<tr>
<td>70</td>
<td>Golfingia sp. #1</td>
<td>25353</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DRMP Code</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>71</td>
<td>Sipunculida spp.</td>
<td>25350</td>
</tr>
<tr>
<td>72</td>
<td>Priapulus caudata</td>
<td>25454</td>
</tr>
<tr>
<td>73</td>
<td>Echiurus echiurus alaskanus</td>
<td>25402</td>
</tr>
<tr>
<td>74</td>
<td>Archynchite pugettensis</td>
<td>25403</td>
</tr>
<tr>
<td>75</td>
<td>Musculus sp. #2</td>
<td>40385</td>
</tr>
<tr>
<td>76</td>
<td>Nebalia bipes</td>
<td>40090</td>
</tr>
<tr>
<td>77</td>
<td>Leptognatha nr. longiremis</td>
<td>40042</td>
</tr>
<tr>
<td>78</td>
<td>Paracaudina chilensis</td>
<td>16601</td>
</tr>
<tr>
<td>79</td>
<td>Molpadia intermedia?</td>
<td>16604</td>
</tr>
<tr>
<td>80</td>
<td>Pentameria sp. #1</td>
<td>16603</td>
</tr>
<tr>
<td>81</td>
<td>Brisaster latifrons</td>
<td>16108</td>
</tr>
<tr>
<td>82</td>
<td>Dendraster excentricus</td>
<td>16107</td>
</tr>
<tr>
<td>83</td>
<td>Amphiodia periercta</td>
<td>17607</td>
</tr>
<tr>
<td>84</td>
<td>Amphiodia urtica</td>
<td>17606</td>
</tr>
<tr>
<td>85</td>
<td>Amphiuridae spp.</td>
<td>17602</td>
</tr>
<tr>
<td>86</td>
<td>Ophiura lutkeni</td>
<td>17610</td>
</tr>
<tr>
<td>87</td>
<td>Amphiodia spp.</td>
<td>17603</td>
</tr>
<tr>
<td>88</td>
<td>Ophiurida spp.</td>
<td>17611</td>
</tr>
<tr>
<td>89</td>
<td>Amphiodia sp. #1</td>
<td>17608</td>
</tr>
<tr>
<td>90</td>
<td>Amphiura sp. #1</td>
<td>17618</td>
</tr>
<tr>
<td>91</td>
<td>Ophiura sarsii</td>
<td>17614</td>
</tr>
<tr>
<td>92</td>
<td>Ophiura spp.</td>
<td>17612</td>
</tr>
<tr>
<td>93</td>
<td>Amphiplus hexacanthus</td>
<td>17613</td>
</tr>
<tr>
<td>94</td>
<td>Amphioplus spp. #1</td>
<td>23916</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>95</td>
<td>Mesolamprops sp. #1</td>
<td>23897</td>
</tr>
<tr>
<td>96</td>
<td>Hemilamprops californensis</td>
<td>23698</td>
</tr>
<tr>
<td>97</td>
<td>Diastylopsis dawsoni</td>
<td>23899</td>
</tr>
<tr>
<td>98</td>
<td>Diastylopsis tenuis</td>
<td>23900</td>
</tr>
<tr>
<td>99</td>
<td>Diastylis umatillensis</td>
<td>23901</td>
</tr>
<tr>
<td>100</td>
<td>Diastylis bidentata</td>
<td>23902</td>
</tr>
<tr>
<td>101</td>
<td>Diastylis alaskensis</td>
<td>23903</td>
</tr>
<tr>
<td>102</td>
<td>Diastylis sp. #1</td>
<td>23904</td>
</tr>
<tr>
<td>103</td>
<td>Eudorellopsis longirostris</td>
<td>23905</td>
</tr>
<tr>
<td>104</td>
<td>Colurostylis occidentalis</td>
<td>23906</td>
</tr>
<tr>
<td>105</td>
<td>Lamprops sp. #2</td>
<td>40420</td>
</tr>
<tr>
<td>106</td>
<td>Campylaspis sp. #1</td>
<td>23908</td>
</tr>
<tr>
<td>107</td>
<td>Campylaspis sp. #2</td>
<td>23909</td>
</tr>
<tr>
<td>108</td>
<td>Campylaspis sp. #3</td>
<td>23910</td>
</tr>
<tr>
<td>109</td>
<td>Eudorella pacifica</td>
<td>23914</td>
</tr>
<tr>
<td>110</td>
<td>Archeomysis grebnitzkii</td>
<td>23855</td>
</tr>
<tr>
<td>111</td>
<td>Neomysis franciscorum</td>
<td>23885</td>
</tr>
<tr>
<td>112</td>
<td>Neomysis kadiakensis</td>
<td>23865</td>
</tr>
<tr>
<td>113</td>
<td>Acanthomyais macropsis</td>
<td>23856</td>
</tr>
<tr>
<td>114</td>
<td>Acanthomyais davis</td>
<td>23879</td>
</tr>
<tr>
<td>115</td>
<td>Acanthomyais nephrothalma</td>
<td>23880</td>
</tr>
<tr>
<td>116</td>
<td>Neomysis sp. #1</td>
<td>23877</td>
</tr>
<tr>
<td>117</td>
<td>Mysini spp.</td>
<td>23881</td>
</tr>
<tr>
<td>118</td>
<td>Neomysis spp.</td>
<td>23875</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>119</td>
<td>Acanthomysis spp.</td>
<td>23874</td>
</tr>
<tr>
<td>120</td>
<td>Mysidacea spp.</td>
<td>23840</td>
</tr>
<tr>
<td>121</td>
<td>Ampelisca macrocephala</td>
<td>24006</td>
</tr>
<tr>
<td>122</td>
<td>Ampelisca hancocki</td>
<td>24005</td>
</tr>
<tr>
<td>123</td>
<td>Ampelisca agassiz</td>
<td>24004</td>
</tr>
<tr>
<td>124</td>
<td>Macoma calcarea</td>
<td>22322</td>
</tr>
<tr>
<td>125</td>
<td>Ampelisca brevisimulata</td>
<td>40447</td>
</tr>
<tr>
<td>126</td>
<td>Bybils veleronis</td>
<td>40044</td>
</tr>
<tr>
<td>127</td>
<td>Monoculodes spinipes</td>
<td>24136</td>
</tr>
<tr>
<td>128</td>
<td>Monoculodes sp. #1</td>
<td>24137</td>
</tr>
<tr>
<td>129</td>
<td>Monoculodes sp. #2</td>
<td>24138</td>
</tr>
<tr>
<td>130</td>
<td>Monoculodes zernovi?</td>
<td>24141</td>
</tr>
<tr>
<td>131</td>
<td>Bathymedon? sp. #1</td>
<td>24134</td>
</tr>
<tr>
<td>132</td>
<td>Synchelidium shoemakeri</td>
<td>24139</td>
</tr>
<tr>
<td>133</td>
<td>Synchelidium rectipalmumi?</td>
<td>24142</td>
</tr>
<tr>
<td>134</td>
<td>Westwoodilla caecula</td>
<td>24140</td>
</tr>
<tr>
<td>135</td>
<td>Paraphoxus abronius?</td>
<td>24146</td>
</tr>
<tr>
<td>136</td>
<td>Paraphoxus sp. #5</td>
<td>40499</td>
</tr>
<tr>
<td>137</td>
<td>Paraphoxus epistomus?</td>
<td>24148</td>
</tr>
<tr>
<td>138</td>
<td>Paraphoxus hetercuspidatus</td>
<td>24149</td>
</tr>
<tr>
<td>139</td>
<td>Paraphoxus obtusidens</td>
<td>24152</td>
</tr>
<tr>
<td>140</td>
<td>Paraphoxus obtusidens major</td>
<td>24153</td>
</tr>
<tr>
<td>141</td>
<td>Paraphoxus vigitegus</td>
<td>24162</td>
</tr>
<tr>
<td>142</td>
<td>Paraphoxus variatus</td>
<td>24154</td>
</tr>
</tbody>
</table>

362
<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>Paraphoxus fatigans</td>
<td>24163</td>
</tr>
<tr>
<td>144</td>
<td>Paraphoxus stenodes?</td>
<td>24164</td>
</tr>
<tr>
<td>145</td>
<td>Paraphoxus milleri</td>
<td>24151</td>
</tr>
<tr>
<td>146</td>
<td>Paraphoxus lucubrana?</td>
<td>24150</td>
</tr>
<tr>
<td>147</td>
<td>Paraphoxus sp. 01</td>
<td>24155</td>
</tr>
<tr>
<td>148</td>
<td>Paraphoxus sp. 02</td>
<td>24156</td>
</tr>
<tr>
<td>149</td>
<td>Paraphoxus sp. 03</td>
<td>24167</td>
</tr>
<tr>
<td>150</td>
<td>Paraphoxus sp. 04</td>
<td>40043</td>
</tr>
<tr>
<td>151</td>
<td>Paraphoxus spp.</td>
<td>24157</td>
</tr>
<tr>
<td>152</td>
<td>Hetaraphoxus</td>
<td>24158</td>
</tr>
<tr>
<td>153</td>
<td>Mandibulophoxus uncirostratus</td>
<td>24159</td>
</tr>
<tr>
<td>154</td>
<td>Atylus tridens</td>
<td>24239</td>
</tr>
<tr>
<td>155</td>
<td>Eohaustorius sencillus</td>
<td>24096</td>
</tr>
<tr>
<td>156</td>
<td>Eohaustorius washingtonianus</td>
<td>24097</td>
</tr>
<tr>
<td>157</td>
<td>Photia brevipes</td>
<td>24325</td>
</tr>
<tr>
<td>158</td>
<td>Photia lacia</td>
<td>24328</td>
</tr>
<tr>
<td>159</td>
<td>Metopa sp. 02</td>
<td>40064</td>
</tr>
<tr>
<td>160</td>
<td>Photia californica?</td>
<td>24326</td>
</tr>
<tr>
<td>161</td>
<td>Photia spp.</td>
<td>24324</td>
</tr>
<tr>
<td>162</td>
<td>Lechydromorpha pelagope</td>
<td>24108</td>
</tr>
<tr>
<td>163</td>
<td>Protomedelia sp. 01</td>
<td>24330</td>
</tr>
<tr>
<td>164</td>
<td>Mecoma sp. 02</td>
<td>22306</td>
</tr>
<tr>
<td>165</td>
<td>Protomedelia sp. 02</td>
<td>24331</td>
</tr>
<tr>
<td>166</td>
<td>Protomedelia notas*</td>
<td>24332</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>167</td>
<td>Aoroides columbiae?</td>
<td>24029</td>
</tr>
<tr>
<td>168</td>
<td>Aoridae sp. #1</td>
<td>40449</td>
</tr>
<tr>
<td>169</td>
<td>Hippomedon denticulatus</td>
<td>24123</td>
</tr>
<tr>
<td>170</td>
<td>Hippomedon wecoomun</td>
<td>24124</td>
</tr>
<tr>
<td>171</td>
<td>Pachynus chelatum</td>
<td>40456</td>
</tr>
<tr>
<td>172</td>
<td>Orchomene pacifica</td>
<td>40454</td>
</tr>
<tr>
<td>173</td>
<td>Opisa tridentata</td>
<td>24126</td>
</tr>
<tr>
<td>174</td>
<td>Pachynus barnardi?</td>
<td>24129</td>
</tr>
<tr>
<td>175</td>
<td>Nicippe tumida</td>
<td>40457</td>
</tr>
<tr>
<td>176</td>
<td>Anonyx adoxus</td>
<td>40045</td>
</tr>
<tr>
<td>177</td>
<td>Lysianassidae sp. #1</td>
<td>40458</td>
</tr>
<tr>
<td>178</td>
<td>Hippomedon sp. #1</td>
<td>40453</td>
</tr>
<tr>
<td>179</td>
<td>Melita desdichada?</td>
<td>24084</td>
</tr>
<tr>
<td>180</td>
<td>Melita oregonensis</td>
<td>24086</td>
</tr>
<tr>
<td>181</td>
<td>Melita sp.</td>
<td>24245</td>
</tr>
<tr>
<td>182</td>
<td>Pleusymtes coquilla</td>
<td>24169</td>
</tr>
<tr>
<td>183</td>
<td>Listriella spp.</td>
<td>24119</td>
</tr>
<tr>
<td>184</td>
<td>Metopa sp. #1</td>
<td>40463</td>
</tr>
<tr>
<td>185</td>
<td>Stenothoidae sp. #1</td>
<td>40467</td>
</tr>
<tr>
<td>186</td>
<td>Pardaliscella sp. #1</td>
<td>40472</td>
</tr>
<tr>
<td>187</td>
<td>Accedumoera sp. #1</td>
<td>40475</td>
</tr>
<tr>
<td>188</td>
<td>Corophium sp. #1</td>
<td>24056</td>
</tr>
<tr>
<td>189</td>
<td>Bullichia sp. #1</td>
<td>24251</td>
</tr>
<tr>
<td>190</td>
<td>Mayerella hanski a?</td>
<td>40479</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMSP Code</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>191</td>
<td>Tritella pilimana</td>
<td>24342</td>
</tr>
<tr>
<td>192</td>
<td>Nematoda spp.</td>
<td>14000</td>
</tr>
<tr>
<td>193</td>
<td>Bathyleberis</td>
<td>23299</td>
</tr>
<tr>
<td>194</td>
<td>Sclerodonchus tribuberculata</td>
<td>23301</td>
</tr>
<tr>
<td>195</td>
<td>Synidotea angulata</td>
<td>23925</td>
</tr>
<tr>
<td>196</td>
<td>Bathycopea daltonae</td>
<td>40427</td>
</tr>
<tr>
<td>197</td>
<td>Tecticeps convexus</td>
<td>23933</td>
</tr>
<tr>
<td>198</td>
<td>Pleurogonium rubicundum</td>
<td>40437</td>
</tr>
<tr>
<td>199</td>
<td>Argia pugetensis</td>
<td>23929</td>
</tr>
<tr>
<td>200</td>
<td>Balanus hesperius</td>
<td>23730</td>
</tr>
<tr>
<td>201</td>
<td>Crangon alekunia alungata</td>
<td>24436</td>
</tr>
<tr>
<td>202</td>
<td>Crangon stylirostris</td>
<td>24448</td>
</tr>
<tr>
<td>203</td>
<td>Crangon</td>
<td>24446</td>
</tr>
<tr>
<td>204</td>
<td>Spionocardia gracilis</td>
<td>24432</td>
</tr>
<tr>
<td>205</td>
<td>Pinnixa</td>
<td>24961</td>
</tr>
<tr>
<td>206</td>
<td>Pinnixa</td>
<td>24962</td>
</tr>
<tr>
<td>207</td>
<td>Pinnixa</td>
<td>24963</td>
</tr>
<tr>
<td>208</td>
<td>Peyurus ochotensis</td>
<td>24671</td>
</tr>
<tr>
<td>209</td>
<td>Peyurus quaxley</td>
<td>24672</td>
</tr>
<tr>
<td>210</td>
<td>Peyurus armatus</td>
<td>24657</td>
</tr>
<tr>
<td>211</td>
<td>Peyurus</td>
<td>24678</td>
</tr>
<tr>
<td>212</td>
<td>Paguridae</td>
<td>24650</td>
</tr>
<tr>
<td>213</td>
<td>Paguridae</td>
<td>24650</td>
</tr>
<tr>
<td>214</td>
<td>Paguridae</td>
<td>24650</td>
</tr>
<tr>
<td>Code</td>
<td>Species</td>
<td>Code</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>215</td>
<td>Pinnixa spp.</td>
<td>24970</td>
</tr>
<tr>
<td>216</td>
<td>Cancer gracilis?</td>
<td>24929</td>
</tr>
<tr>
<td>217</td>
<td>Cancer magister</td>
<td>24930</td>
</tr>
<tr>
<td>218</td>
<td>Munida quadrispina</td>
<td>24626</td>
</tr>
<tr>
<td>219</td>
<td>Abarenicola sp. 01</td>
<td>40348</td>
</tr>
<tr>
<td>220</td>
<td>Ophelina acuminata</td>
<td>40334</td>
</tr>
<tr>
<td>221</td>
<td>Ampharete uncifrons</td>
<td>19710</td>
</tr>
<tr>
<td>222</td>
<td>Ampharete spp.</td>
<td>19709</td>
</tr>
<tr>
<td>223</td>
<td>Eteone sp. 02</td>
<td>40295</td>
</tr>
<tr>
<td>224</td>
<td>Apistobranchus ornatus</td>
<td>40362</td>
</tr>
<tr>
<td>225</td>
<td>Aricidea ramosa</td>
<td>19113</td>
</tr>
<tr>
<td>226</td>
<td>Aricidea sp. 01</td>
<td>19114</td>
</tr>
<tr>
<td>227</td>
<td>Armandia bioculata</td>
<td>19541</td>
</tr>
<tr>
<td>228</td>
<td>Articella hancocki</td>
<td>40355</td>
</tr>
<tr>
<td>229</td>
<td>Corophium salmonis</td>
<td>24051</td>
</tr>
<tr>
<td>230</td>
<td>Eteone barbata</td>
<td>40296</td>
</tr>
<tr>
<td>231</td>
<td>Capitella capitata</td>
<td>19641</td>
</tr>
<tr>
<td>232</td>
<td>Capitella capitata oculata</td>
<td>19649</td>
</tr>
<tr>
<td>233</td>
<td>Opistobranchia sp. 01</td>
<td>40371</td>
</tr>
<tr>
<td>234</td>
<td>Nothria spp.</td>
<td>19306</td>
</tr>
<tr>
<td>235</td>
<td>Barenolosia americana</td>
<td>40351</td>
</tr>
<tr>
<td>236</td>
<td>Charonoptera setosa</td>
<td>19515</td>
</tr>
<tr>
<td>237</td>
<td>Jimenezia</td>
<td>40116</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>239</td>
<td>Chaetozona nr. berkeleyorum</td>
<td>40331</td>
</tr>
<tr>
<td>240</td>
<td>Cirratulidae spp.</td>
<td>19500</td>
</tr>
<tr>
<td>241</td>
<td>Maldanidae sp. #20</td>
<td>40345</td>
</tr>
<tr>
<td>242</td>
<td>Decamastus gracili?</td>
<td>40352</td>
</tr>
<tr>
<td>243</td>
<td>Trochachaeta franciscanum</td>
<td>40364</td>
</tr>
<tr>
<td>244</td>
<td>Eteone sp. #6</td>
<td>40298</td>
</tr>
<tr>
<td>245</td>
<td>Eteone californi?</td>
<td>19137</td>
</tr>
<tr>
<td>246</td>
<td>Eteone spp.</td>
<td>19155</td>
</tr>
<tr>
<td>247</td>
<td>Maldanidae sp. #21</td>
<td>40346</td>
</tr>
<tr>
<td>248</td>
<td>Phyllodocidae sp. #1</td>
<td>90302</td>
</tr>
<tr>
<td>249</td>
<td>Opistobranchia sp. #2</td>
<td>40372</td>
</tr>
<tr>
<td>250</td>
<td>Eumida sanguinea</td>
<td>19149</td>
</tr>
<tr>
<td>251</td>
<td>Flabelligeridae spp.</td>
<td>19520</td>
</tr>
<tr>
<td>252</td>
<td>Glycera capitata</td>
<td>19262</td>
</tr>
<tr>
<td>253</td>
<td>Glycera spp.</td>
<td>19265</td>
</tr>
<tr>
<td>254</td>
<td>Typosyllis hyalina</td>
<td>40307</td>
</tr>
<tr>
<td>255</td>
<td>Typosyllis nr. hyalina</td>
<td>40491</td>
</tr>
<tr>
<td>256</td>
<td>Glycinda sp. #2</td>
<td>40313</td>
</tr>
<tr>
<td>257</td>
<td>Phyllodocidae sp. #2</td>
<td>40303</td>
</tr>
<tr>
<td>258</td>
<td>Glycinda spp.</td>
<td>19284</td>
</tr>
<tr>
<td>259</td>
<td>Goniada maculata</td>
<td>19287</td>
</tr>
<tr>
<td>260</td>
<td>Artacana sp.</td>
<td>19722</td>
</tr>
<tr>
<td>261</td>
<td>Haploascoleplus elongatus</td>
<td>19421</td>
</tr>
<tr>
<td>262</td>
<td>Cosssura spp.</td>
<td>19131</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>263</td>
<td>Hesionidae spp.</td>
<td>19120</td>
</tr>
<tr>
<td>264</td>
<td>Heteromastus filobranchus</td>
<td>19651</td>
</tr>
<tr>
<td>265</td>
<td>Hesiospina sp. #1</td>
<td>40286</td>
</tr>
<tr>
<td>266</td>
<td>Laonice cirrata</td>
<td>19442</td>
</tr>
<tr>
<td>267</td>
<td>Neoamphitrite robusta</td>
<td>40356</td>
</tr>
<tr>
<td>268</td>
<td>Lepidonotus sp. #1</td>
<td>19034</td>
</tr>
<tr>
<td>269</td>
<td>Heteromastus minutus</td>
<td>19212</td>
</tr>
<tr>
<td>270</td>
<td>Arabellidae sp. #4</td>
<td>40319</td>
</tr>
<tr>
<td>271</td>
<td>Eteone sp. #7</td>
<td>40299</td>
</tr>
<tr>
<td>272</td>
<td>Anaitidae sp. #4</td>
<td>40301</td>
</tr>
<tr>
<td>273</td>
<td>Lumbrineris latreilli</td>
<td>19349</td>
</tr>
<tr>
<td>274</td>
<td>Lumbrineris cf. longensis</td>
<td>19359</td>
</tr>
<tr>
<td>275</td>
<td>Lumbrineris luti</td>
<td>19350</td>
</tr>
<tr>
<td>276</td>
<td>Lumbrineris similabria</td>
<td>19351</td>
</tr>
<tr>
<td>277</td>
<td>Lumbrineris spp.</td>
<td>19347</td>
</tr>
<tr>
<td>278</td>
<td>Magelona longicornis</td>
<td>19467</td>
</tr>
<tr>
<td>279</td>
<td>Magelona secculata</td>
<td>40150</td>
</tr>
<tr>
<td>280</td>
<td>Magelona pitelkai</td>
<td>40326</td>
</tr>
<tr>
<td>281</td>
<td>Magelona spp.</td>
<td>19463</td>
</tr>
<tr>
<td>282</td>
<td>Haldane sarsi</td>
<td>19562</td>
</tr>
<tr>
<td>283</td>
<td>Arabella spp.</td>
<td>19382</td>
</tr>
<tr>
<td>284</td>
<td>Nephtys cornuta</td>
<td>40308</td>
</tr>
<tr>
<td>285</td>
<td>Lumida spp.</td>
<td>40492</td>
</tr>
<tr>
<td>286</td>
<td>Maldanidae sp. #4</td>
<td>40342</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>287</td>
<td>Dorvilleidae spp.</td>
<td>19400</td>
</tr>
<tr>
<td>288</td>
<td>Polydora caulleryi</td>
<td>19445</td>
</tr>
<tr>
<td>289</td>
<td>Boccardia basilaria</td>
<td>40323</td>
</tr>
<tr>
<td>290</td>
<td>Ampharetidae spp.</td>
<td>19700</td>
</tr>
<tr>
<td>291</td>
<td>Paraonidae spp.</td>
<td>19110</td>
</tr>
<tr>
<td>292</td>
<td>Polydora sp. #2</td>
<td>40322</td>
</tr>
<tr>
<td>293</td>
<td>Maldanidae spp.</td>
<td>19560</td>
</tr>
<tr>
<td>294</td>
<td>Mediomostus californiensis</td>
<td>19643</td>
</tr>
<tr>
<td>295</td>
<td>Nephtyidae spp.</td>
<td>19240</td>
</tr>
<tr>
<td>296</td>
<td>Heteromastus sp. #1</td>
<td>40350</td>
</tr>
<tr>
<td>297</td>
<td>Melinna oculata</td>
<td>19708</td>
</tr>
<tr>
<td>298</td>
<td>Notomastus lineatus</td>
<td>40349</td>
</tr>
<tr>
<td>299</td>
<td>Maldanidae sp. #19</td>
<td>40344</td>
</tr>
<tr>
<td>300</td>
<td>Myriochele oculata</td>
<td>40347</td>
</tr>
<tr>
<td>301</td>
<td>Nephtys caeca</td>
<td>19241</td>
</tr>
<tr>
<td>302</td>
<td>Nephtys caecoides</td>
<td>19242</td>
</tr>
<tr>
<td>303</td>
<td>Nephtys californiensis</td>
<td>19243</td>
</tr>
<tr>
<td>304</td>
<td>Nephtys glabra</td>
<td>19251</td>
</tr>
<tr>
<td>305</td>
<td>Scoloplos spp.</td>
<td>19429</td>
</tr>
<tr>
<td>306</td>
<td>Nereidae spp.</td>
<td>19220</td>
</tr>
<tr>
<td>307</td>
<td>Eteone longa</td>
<td>19160</td>
</tr>
<tr>
<td>308</td>
<td>Nereis spp.</td>
<td>19232</td>
</tr>
<tr>
<td>309</td>
<td>Ninoe gemmea</td>
<td>19346</td>
</tr>
<tr>
<td>310</td>
<td>Ninoe tridensc</td>
<td>19304</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>311</td>
<td>Northia geophiliformis</td>
<td>40314</td>
</tr>
<tr>
<td>312</td>
<td>Notomastus hemipodus?</td>
<td>19644</td>
</tr>
<tr>
<td>313</td>
<td>Ophelia sp. #1</td>
<td>40151</td>
</tr>
<tr>
<td>314</td>
<td>Eteone sp. #5</td>
<td>40297</td>
</tr>
<tr>
<td>315</td>
<td>Orbinidae spp.</td>
<td>19420</td>
</tr>
<tr>
<td>316</td>
<td>Owenia collaris</td>
<td>40157</td>
</tr>
<tr>
<td>317</td>
<td>Parathorea platybrachia</td>
<td>40154</td>
</tr>
<tr>
<td>318</td>
<td>Thelepus setosus</td>
<td>40357</td>
</tr>
<tr>
<td>319</td>
<td>Pectinaria granulata</td>
<td>40354</td>
</tr>
<tr>
<td>320</td>
<td>Pectinaria californiensis</td>
<td>19661</td>
</tr>
<tr>
<td>321</td>
<td>Pectinaria spp.</td>
<td>19663</td>
</tr>
<tr>
<td>322</td>
<td>Pholoe minuta</td>
<td>19061</td>
</tr>
<tr>
<td>323</td>
<td>Anaitides groenlandica</td>
<td>40292</td>
</tr>
<tr>
<td>324</td>
<td>Anaitides mucosa</td>
<td>40291</td>
</tr>
<tr>
<td>325</td>
<td>Phylloleocidae spp.</td>
<td>19136</td>
</tr>
<tr>
<td>326</td>
<td>Phylo felix</td>
<td>40321</td>
</tr>
<tr>
<td>327</td>
<td>Pilargidae spp.</td>
<td>19860</td>
</tr>
<tr>
<td>328</td>
<td>Pista cristata</td>
<td>19735</td>
</tr>
<tr>
<td>329</td>
<td>Lumbrineris bicirratata</td>
<td>19341</td>
</tr>
<tr>
<td>330</td>
<td>Pista morrei</td>
<td>19736</td>
</tr>
<tr>
<td>331</td>
<td>Polycirrus spp.</td>
<td>19729</td>
</tr>
<tr>
<td>332</td>
<td>Polydora spp.</td>
<td>19451</td>
</tr>
<tr>
<td>333</td>
<td>Polynoidae spp.</td>
<td>19020</td>
</tr>
<tr>
<td>334</td>
<td>Praxillella gracilis</td>
<td>40340</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>335</td>
<td>Munispio cirrifera</td>
<td>40324</td>
</tr>
<tr>
<td>336</td>
<td>Prioniopsio malmagreni</td>
<td>19457</td>
</tr>
<tr>
<td>337</td>
<td>Parapriaprosio pinnata</td>
<td>19456</td>
</tr>
<tr>
<td>338</td>
<td>Prioniopsio spp.</td>
<td>19459</td>
</tr>
<tr>
<td>339</td>
<td>Rhodine bitorquata</td>
<td>40341</td>
</tr>
<tr>
<td>340</td>
<td>Anaitides spp.</td>
<td>19143</td>
</tr>
<tr>
<td>341</td>
<td>Scoloplos armiger</td>
<td>19427</td>
</tr>
<tr>
<td>342</td>
<td>Opheliidae spp.</td>
<td>19540</td>
</tr>
<tr>
<td>343</td>
<td>Spio filicornis</td>
<td>40037</td>
</tr>
<tr>
<td>344</td>
<td>Spiophanes bombyx</td>
<td>19453</td>
</tr>
<tr>
<td>345</td>
<td>Spiophanes berkeleyorum</td>
<td>40155</td>
</tr>
<tr>
<td>346</td>
<td>Capitellidae sp. #1</td>
<td>40353</td>
</tr>
<tr>
<td>347</td>
<td>Sternaspis fossor</td>
<td>40116</td>
</tr>
<tr>
<td>348</td>
<td>Sthenelais tertinglabra</td>
<td>19068</td>
</tr>
<tr>
<td>349</td>
<td>Lanassa sp. #1</td>
<td>40358</td>
</tr>
<tr>
<td>350</td>
<td>Syllidae spp.</td>
<td>19200</td>
</tr>
<tr>
<td>351</td>
<td>Ophiodermella sp. #1</td>
<td>40382</td>
</tr>
<tr>
<td>352</td>
<td>Spiochaetopterus costarum</td>
<td>40328</td>
</tr>
<tr>
<td>353</td>
<td>Terebellidae spp.</td>
<td>19720</td>
</tr>
<tr>
<td>354</td>
<td>Thalenessa spinosa</td>
<td>40118</td>
</tr>
<tr>
<td>355</td>
<td>Aricidea spp.</td>
<td>19111</td>
</tr>
<tr>
<td>356</td>
<td>Tharyx tesselata</td>
<td>19512</td>
</tr>
<tr>
<td>357</td>
<td>Tharyx sp. #1</td>
<td>40119</td>
</tr>
<tr>
<td>358</td>
<td>Tharyx multifilis</td>
<td>40329</td>
</tr>
</tbody>
</table>

371
<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>359</td>
<td>Tharyx spp.</td>
<td>19510</td>
</tr>
<tr>
<td>360</td>
<td>Travisia gigas</td>
<td>19550</td>
</tr>
<tr>
<td>361</td>
<td>Nemertea spp.</td>
<td>18700</td>
</tr>
<tr>
<td>362</td>
<td>Miscellaneous #1</td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>Miscellaneous #2</td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>Miscellaneous #3</td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>Turbellaria spp.</td>
<td>14201</td>
</tr>
<tr>
<td>366</td>
<td>Gammaridea sp. #2</td>
<td>40476</td>
</tr>
<tr>
<td>367</td>
<td>Hydrozoa spp.</td>
<td>11501</td>
</tr>
<tr>
<td>368</td>
<td>Capitellidae spp.</td>
<td>19640</td>
</tr>
<tr>
<td>369</td>
<td>Polychaeta spp.</td>
<td>19001</td>
</tr>
<tr>
<td>370</td>
<td>Spionidae spp.</td>
<td>19430</td>
</tr>
<tr>
<td>371</td>
<td>Lysianassidae spp.</td>
<td>24122</td>
</tr>
<tr>
<td>372</td>
<td>Eunoe sp. #1</td>
<td>40196</td>
</tr>
<tr>
<td>373</td>
<td>Nephtys spp.</td>
<td>19247</td>
</tr>
<tr>
<td>374</td>
<td>Pelecypoda sp. #10</td>
<td>40402</td>
</tr>
<tr>
<td>375</td>
<td>Miscellaneous #4</td>
<td></td>
</tr>
<tr>
<td>376</td>
<td>Miscellaneous #5</td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>Anthozoa sp. #1</td>
<td>40252</td>
</tr>
<tr>
<td>378</td>
<td>Anthozoa sp. #2</td>
<td>40253</td>
</tr>
<tr>
<td>379</td>
<td>Anthozoa sp. #3</td>
<td>40254</td>
</tr>
<tr>
<td>380</td>
<td>Synidotea bicuspida</td>
<td>40429</td>
</tr>
<tr>
<td>381</td>
<td>Pycnogonida sp. #1</td>
<td>40415</td>
</tr>
<tr>
<td>382</td>
<td>Anthozoa spp.</td>
<td>12000</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>383</td>
<td>Anaitides sp. #3</td>
<td>40300</td>
</tr>
<tr>
<td>384</td>
<td>Scolelepsis cirratulus</td>
<td>40325</td>
</tr>
<tr>
<td>385</td>
<td>Glycera convoluta</td>
<td>40311</td>
</tr>
<tr>
<td>386</td>
<td>Arenicolidae spp.</td>
<td>19620</td>
</tr>
<tr>
<td>387</td>
<td>Arabellidae spp.</td>
<td>19380</td>
</tr>
<tr>
<td>388</td>
<td>Autolytus spp.</td>
<td>19202</td>
</tr>
<tr>
<td>389</td>
<td>Anobothrus gracilis?</td>
<td>19702</td>
</tr>
<tr>
<td>390</td>
<td>Nephtys ferruginea</td>
<td>19244</td>
</tr>
<tr>
<td>391</td>
<td>Macoma balthica?</td>
<td>22324</td>
</tr>
<tr>
<td>392</td>
<td>Aedicia sp. #1</td>
<td>40265</td>
</tr>
<tr>
<td>393</td>
<td>Eteone sp. #1</td>
<td>40294</td>
</tr>
<tr>
<td>394</td>
<td>Heteromastus spp.</td>
<td>19653</td>
</tr>
<tr>
<td>395</td>
<td>Antinoella macrolepida?</td>
<td>40281</td>
</tr>
<tr>
<td>396</td>
<td>Melinna spp.</td>
<td>19706</td>
</tr>
<tr>
<td>397</td>
<td>Ovemidae spp.</td>
<td>19580</td>
</tr>
<tr>
<td>398</td>
<td>Meris zonata</td>
<td>19231</td>
</tr>
<tr>
<td>399</td>
<td>Mesocheopterurus #1</td>
<td>40327</td>
</tr>
<tr>
<td>400</td>
<td>Campylaspis rubromoculata</td>
<td>23307</td>
</tr>
<tr>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>Rhachotropis oculata</td>
<td>40474</td>
</tr>
<tr>
<td>403</td>
<td>Chaetopteridae spp.</td>
<td>19480</td>
</tr>
<tr>
<td>404</td>
<td>Stygrella sp.</td>
<td>23960</td>
</tr>
<tr>
<td>405</td>
<td>Salpinidae spp.</td>
<td>19740</td>
</tr>
<tr>
<td>406</td>
<td>Asychia disperidentata</td>
<td>40336</td>
</tr>
</tbody>
</table>

Table C-11C (continued)
<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>407</td>
<td>Goniadidae spp.</td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>Glycine picta</td>
<td>40149</td>
</tr>
<tr>
<td>409</td>
<td>Scalibregma inflatum</td>
<td>19803</td>
</tr>
<tr>
<td>410</td>
<td>Byblis sp. #1</td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>Bathymedon? sp. #2</td>
<td>40460</td>
</tr>
<tr>
<td>412</td>
<td>Proboloidea sp. #1</td>
<td>40465</td>
</tr>
<tr>
<td>413</td>
<td>Guernea? sp. #1</td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>Hesionidae sp. #1</td>
<td>40288</td>
</tr>
<tr>
<td>415</td>
<td>Pelecypoda sp. #4</td>
<td>40399</td>
</tr>
<tr>
<td>416</td>
<td>Armina californica</td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>Nuculanidae spp.</td>
<td>21960</td>
</tr>
<tr>
<td>418</td>
<td>Pectinaria sp. #1</td>
<td>19664</td>
</tr>
<tr>
<td>419</td>
<td>Phoronis spumaphila?</td>
<td>40488</td>
</tr>
<tr>
<td>420</td>
<td>Hesionidae sp. #2</td>
<td>40289</td>
</tr>
<tr>
<td>421</td>
<td>Echiura sp. #3</td>
<td>40485</td>
</tr>
<tr>
<td>422</td>
<td>Oligochaeta spp.</td>
<td>19900</td>
</tr>
<tr>
<td>423</td>
<td>Echiurida spp.</td>
<td>25400</td>
</tr>
<tr>
<td>424</td>
<td>Rutiderma sp. #1</td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>Amphiodia periercta-urtica</td>
<td>40489</td>
</tr>
<tr>
<td>426</td>
<td>Glycera sp. #1</td>
<td>40312</td>
</tr>
<tr>
<td>427</td>
<td>Echiura sp. #1</td>
<td>40486</td>
</tr>
<tr>
<td>428</td>
<td>Anthozoa sp. #4</td>
<td>40255</td>
</tr>
<tr>
<td>429</td>
<td>Anthozoa sp. #5</td>
<td>40256</td>
</tr>
<tr>
<td>430</td>
<td>Anthozoa sp. #6</td>
<td>40257</td>
</tr>
</tbody>
</table>

374
Table C-IIC (continued)

<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>431</td>
<td>Macoma spp.</td>
<td>22326</td>
</tr>
<tr>
<td>423</td>
<td>Exogone spp.</td>
<td>19217</td>
</tr>
<tr>
<td>433</td>
<td>Arabelldae sp. #3</td>
<td>40318</td>
</tr>
<tr>
<td>434</td>
<td>Pilargis berkeleyae</td>
<td>40360</td>
</tr>
<tr>
<td>435</td>
<td>Parandalia fauveli</td>
<td>40359</td>
</tr>
<tr>
<td>436</td>
<td>Lumbrineris zonata</td>
<td>19345</td>
</tr>
<tr>
<td>437</td>
<td>Myriochele heeri</td>
<td>19581</td>
</tr>
<tr>
<td>438</td>
<td>Nemertea sp. #1</td>
<td>40267</td>
</tr>
<tr>
<td>439</td>
<td>Ampharete arctica</td>
<td>19713</td>
</tr>
<tr>
<td>440</td>
<td>Nephtys rickettsi</td>
<td>40310</td>
</tr>
<tr>
<td>441</td>
<td>Pista spp.</td>
<td>19734</td>
</tr>
<tr>
<td>442</td>
<td>Paraonis gracilis oculatus</td>
<td>40095</td>
</tr>
<tr>
<td>443</td>
<td>Tharyx sp. #3</td>
<td>40330</td>
</tr>
<tr>
<td>444</td>
<td>Maldanidae sp. #14</td>
<td>40343</td>
</tr>
<tr>
<td>445</td>
<td>Praxillella affinis pacifica</td>
<td>40339</td>
</tr>
<tr>
<td>446</td>
<td>Nemertea sp. #2</td>
<td>40268</td>
</tr>
<tr>
<td>447</td>
<td>Terebellides stroemi</td>
<td>19731</td>
</tr>
<tr>
<td>448</td>
<td>Aricidea neosuecica</td>
<td>40094</td>
</tr>
<tr>
<td>449</td>
<td>Cossura nr. laevisata</td>
<td>40290</td>
</tr>
<tr>
<td>450</td>
<td>Sigambra tentaculata</td>
<td>19867</td>
</tr>
<tr>
<td>451</td>
<td>Nemertea sp. #3</td>
<td>40269</td>
</tr>
<tr>
<td>452</td>
<td>Amplicteis sp. #1</td>
<td>40123</td>
</tr>
<tr>
<td>453</td>
<td>Isocirrus sp. #1</td>
<td>40338</td>
</tr>
<tr>
<td>454</td>
<td>Lumbrineris minima</td>
<td>40315</td>
</tr>
</tbody>
</table>

375
Table C-IIC (continued)

<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>Arabellidae sp. #1</td>
<td>40317</td>
</tr>
<tr>
<td>456</td>
<td>Nemertea sp. #4</td>
<td>40270</td>
</tr>
<tr>
<td>457</td>
<td>Asychis sp. #2</td>
<td>40337</td>
</tr>
<tr>
<td>458</td>
<td>Schistomaringos annulata</td>
<td>40320</td>
</tr>
<tr>
<td>459</td>
<td>Podarkeopsis brevipalpa</td>
<td>40287</td>
</tr>
<tr>
<td>460</td>
<td>Nemertea sp. #5</td>
<td>40271</td>
</tr>
<tr>
<td>461</td>
<td>Sphaerodoridae spp.</td>
<td>40105</td>
</tr>
<tr>
<td>462</td>
<td>Asychis spp.</td>
<td>19566</td>
</tr>
<tr>
<td>463</td>
<td>Nemertea sp. #6</td>
<td>40272</td>
</tr>
<tr>
<td>464</td>
<td>Nephtys cornuta franciscanum</td>
<td>40309</td>
</tr>
<tr>
<td>465</td>
<td>Harmothoe nr. lunulata</td>
<td>19027</td>
</tr>
<tr>
<td>466</td>
<td>Hesperonea sp. #1</td>
<td>40282</td>
</tr>
<tr>
<td>467</td>
<td>Orbinia sp. #1</td>
<td>40092</td>
</tr>
<tr>
<td>468</td>
<td>Pherusa papillata</td>
<td>40333</td>
</tr>
<tr>
<td>469</td>
<td>Sphaerodoropsis sphaerulifer</td>
<td>40104</td>
</tr>
<tr>
<td>470</td>
<td>Brada pluribranchiata</td>
<td>40332</td>
</tr>
<tr>
<td>471</td>
<td>Nemertea sp. #7</td>
<td>40273</td>
</tr>
<tr>
<td>472</td>
<td>Nemertea sp. #8</td>
<td>40274</td>
</tr>
<tr>
<td>473</td>
<td>Nemertea sp. #9</td>
<td>40275</td>
</tr>
<tr>
<td>474</td>
<td>Lepidasthenia longicurata</td>
<td>40603</td>
</tr>
<tr>
<td>475</td>
<td>Nemertea sp. #11</td>
<td>40277</td>
</tr>
<tr>
<td>476</td>
<td>Tenonia kitaapensia</td>
<td>40102</td>
</tr>
<tr>
<td>477</td>
<td>Typosyllia alternata</td>
<td>40306</td>
</tr>
<tr>
<td>478</td>
<td>Exogone louriei</td>
<td>40110</td>
</tr>
</tbody>
</table>

376
<table>
<thead>
<tr>
<th>MCR Code</th>
<th>Species</th>
<th>DMRP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>479</td>
<td>Langerhansia heteorchaeta</td>
<td>40305</td>
</tr>
<tr>
<td>480</td>
<td>Lepidasthenia berkelyae</td>
<td>40100</td>
</tr>
<tr>
<td>481</td>
<td>Chone albocincta</td>
<td>40103</td>
</tr>
<tr>
<td>482</td>
<td>Travisia brevis</td>
<td>19546</td>
</tr>
<tr>
<td>483</td>
<td>Myriochele spp.</td>
<td>19583</td>
</tr>
<tr>
<td>484</td>
<td>Sigalionidae spp.</td>
<td>19055</td>
</tr>
<tr>
<td>485</td>
<td>Nemertea sp. #12</td>
<td>40278</td>
</tr>
<tr>
<td>486</td>
<td>Orthomene sp. #2</td>
<td>40455</td>
</tr>
<tr>
<td>487</td>
<td>Paraphoros tridentatus</td>
<td>40461</td>
</tr>
<tr>
<td>488</td>
<td>Anisogammarus confervicolus</td>
<td>24067</td>
</tr>
<tr>
<td>489</td>
<td>Anisogammarus pugettensis</td>
<td>24069</td>
</tr>
<tr>
<td>490</td>
<td>Allorchestes sp. #1</td>
<td>21497</td>
</tr>
<tr>
<td>491</td>
<td>Parapleustes pugettensis</td>
<td>24173</td>
</tr>
<tr>
<td>492</td>
<td>Corophium brevis</td>
<td>24047</td>
</tr>
<tr>
<td>493</td>
<td>Jassa? sp. #1</td>
<td>40452</td>
</tr>
<tr>
<td>494</td>
<td>Eohaustorius brevicuspis</td>
<td>40451</td>
</tr>
<tr>
<td>495</td>
<td>Corophium spinicorne</td>
<td>24053</td>
</tr>
<tr>
<td>496</td>
<td>Synidotea sp. #2</td>
<td>40430</td>
</tr>
<tr>
<td>497</td>
<td>Synidotea sp. #3</td>
<td>40431</td>
</tr>
<tr>
<td>498</td>
<td>Stenothoe sp. #1</td>
<td>24182</td>
</tr>
<tr>
<td>499</td>
<td>Paraselloidea sp. #1</td>
<td>40444</td>
</tr>
<tr>
<td>500</td>
<td>Edotea sublittoralis</td>
<td>40432</td>
</tr>
<tr>
<td>501</td>
<td>Pentidotea oculata</td>
<td>40434</td>
</tr>
<tr>
<td>502</td>
<td>Gnorimosphaeroma oregonensis</td>
<td>23921</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>503</td>
<td>Limnoria lignorum?</td>
<td>23924</td>
</tr>
<tr>
<td>504</td>
<td>Pananthura? sp. #1</td>
<td>40443</td>
</tr>
<tr>
<td>505</td>
<td>Argeia spp.</td>
<td>40440</td>
</tr>
<tr>
<td>506</td>
<td>Hemiarthrus abdominalis</td>
<td>40441</td>
</tr>
<tr>
<td>507</td>
<td>Cymothoidae sp. #1</td>
<td>40446</td>
</tr>
<tr>
<td>508</td>
<td>Saduria ontomon</td>
<td>40435</td>
</tr>
<tr>
<td>509</td>
<td>Gastropteron pacificum</td>
<td>40369</td>
</tr>
<tr>
<td>510</td>
<td>Nemertea sp. #13</td>
<td>40279</td>
</tr>
<tr>
<td>511</td>
<td>Idotea fewsei</td>
<td>40433</td>
</tr>
<tr>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>Pagurus caurinus</td>
<td>40484</td>
</tr>
<tr>
<td>514</td>
<td>Olivella spp.</td>
<td>21654</td>
</tr>
<tr>
<td>515</td>
<td>Phoxocephalus homilis</td>
<td>40462</td>
</tr>
<tr>
<td>516</td>
<td>Stenothoidae spp.</td>
<td>24178</td>
</tr>
<tr>
<td>517</td>
<td>Metopella sp. #1</td>
<td>40466</td>
</tr>
<tr>
<td>518</td>
<td>Acteocina? sp. #1</td>
<td>40370</td>
</tr>
<tr>
<td>519</td>
<td>Pelecypoda sp. #20</td>
<td>40405</td>
</tr>
<tr>
<td>520</td>
<td>Cranion franciscorum</td>
<td>24439</td>
</tr>
<tr>
<td>521</td>
<td>Collisella digitalis?</td>
<td>40366</td>
</tr>
<tr>
<td>522</td>
<td>Turbellaria sp. #1</td>
<td>40258</td>
</tr>
<tr>
<td>523</td>
<td>Cumacea spp.</td>
<td>23889</td>
</tr>
<tr>
<td>524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Tellina sp. #5</td>
<td>40387</td>
</tr>
<tr>
<td>526</td>
<td>Pelecypoda sp. #9</td>
<td>40401</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>527</td>
<td>Isaeidae sp. #1</td>
<td>40470</td>
</tr>
<tr>
<td>528</td>
<td>Loucon sp. #1</td>
<td>40424</td>
</tr>
<tr>
<td>529</td>
<td>Hyperiidea sp. #1</td>
<td>24206</td>
</tr>
<tr>
<td>530</td>
<td>Chantacanthidae spp.</td>
<td>40408</td>
</tr>
<tr>
<td>531</td>
<td>Tomburchus? sp. #1</td>
<td>40394</td>
</tr>
<tr>
<td>532</td>
<td>Caprella sp. #1</td>
<td>40481</td>
</tr>
<tr>
<td>533</td>
<td>Echiura sp. #5</td>
<td>40487</td>
</tr>
<tr>
<td>534</td>
<td>Neomeniida sp. #1</td>
<td>40406</td>
</tr>
<tr>
<td>535</td>
<td>Corophium sp. #1</td>
<td>40450</td>
</tr>
<tr>
<td>536</td>
<td>Nemertea sp. #14</td>
<td>40260</td>
</tr>
<tr>
<td>537</td>
<td>Acanthomysis alaskensis?</td>
<td>40416</td>
</tr>
<tr>
<td>538</td>
<td>Trachypollia? sp. #1</td>
<td>40377</td>
</tr>
<tr>
<td>539</td>
<td>Odostomia spp.</td>
<td>21265</td>
</tr>
<tr>
<td>540</td>
<td>Capitella spp.</td>
<td>19654</td>
</tr>
<tr>
<td>541</td>
<td>Ophelina sp. #1</td>
<td>40335</td>
</tr>
<tr>
<td>542</td>
<td>Pinnixa littoralis</td>
<td>24966</td>
</tr>
<tr>
<td>543</td>
<td>Hirudinea spp.</td>
<td>20271</td>
</tr>
<tr>
<td>544</td>
<td>Anaitides longipes</td>
<td>40293</td>
</tr>
<tr>
<td>545</td>
<td>Gattyana ciliata</td>
<td>40283</td>
</tr>
<tr>
<td>546</td>
<td>Polynoe sp. #1</td>
<td>40284</td>
</tr>
<tr>
<td>547</td>
<td>Callianassacaliforniensis</td>
<td>24614</td>
</tr>
<tr>
<td>548</td>
<td>Cancer oregonensis</td>
<td>24931</td>
</tr>
<tr>
<td>549</td>
<td>Chorilia longipes</td>
<td>24909</td>
</tr>
<tr>
<td>550</td>
<td>Crangon communis</td>
<td>24450</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>551</td>
<td>Paranthid polynoides</td>
<td>19153</td>
</tr>
<tr>
<td>552</td>
<td>Crangon munita</td>
<td>24440</td>
</tr>
<tr>
<td>553</td>
<td>Crangon sp. #1</td>
<td>24452</td>
</tr>
<tr>
<td>554</td>
<td>Nectocrangon alaskensis</td>
<td>24451</td>
</tr>
<tr>
<td>555</td>
<td>Paguristes turgidus</td>
<td>24654</td>
</tr>
<tr>
<td>556</td>
<td>Pagurus aleuticus?</td>
<td>40483</td>
</tr>
<tr>
<td>557</td>
<td>Pandalus danae</td>
<td>24417</td>
</tr>
<tr>
<td>558</td>
<td>Pandalus jordani</td>
<td>24420</td>
</tr>
<tr>
<td>559</td>
<td>Pinnixa occidentalis</td>
<td>24967</td>
</tr>
<tr>
<td>560</td>
<td>Sergestes similis</td>
<td>24462</td>
</tr>
<tr>
<td>561</td>
<td>Spirontocaris avina</td>
<td>24433</td>
</tr>
<tr>
<td>562</td>
<td>Spirontocaris barbata</td>
<td>40046</td>
</tr>
<tr>
<td>563</td>
<td>Spirontocaris bispinosa</td>
<td>24434</td>
</tr>
<tr>
<td>564</td>
<td>Spirontocaris cristata</td>
<td>24430</td>
</tr>
<tr>
<td>565</td>
<td>Spirontocaris lamellicormis</td>
<td>40047</td>
</tr>
<tr>
<td>566</td>
<td>Spirontocaris pusiola?</td>
<td>40048</td>
</tr>
<tr>
<td>567</td>
<td>Spirontocaris suckleyi</td>
<td>40050</td>
</tr>
<tr>
<td>568</td>
<td>Thysanoessa spinifera</td>
<td>24374</td>
</tr>
<tr>
<td>569</td>
<td>Euphausia pacifica</td>
<td>24360</td>
</tr>
<tr>
<td>570</td>
<td>Luidia foliolata</td>
<td>40265</td>
</tr>
<tr>
<td>571</td>
<td>Pisaster brevispinus</td>
<td>40266</td>
</tr>
<tr>
<td>572</td>
<td>Gorgonocephalus caryi</td>
<td>17615</td>
</tr>
<tr>
<td>573</td>
<td>Ophiomusium jolliensis</td>
<td>17616</td>
</tr>
<tr>
<td>574</td>
<td>Euphilomedes producta</td>
<td>40412</td>
</tr>
<tr>
<td>MCR Code</td>
<td>Species</td>
<td>DMRP Code</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>575</td>
<td>Octopus sp. #1</td>
<td>40409</td>
</tr>
<tr>
<td>576</td>
<td>Rossia pacifica</td>
<td>22811</td>
</tr>
<tr>
<td>577</td>
<td>Pectinidae sp. #1</td>
<td>40383</td>
</tr>
<tr>
<td>578</td>
<td>Gastropoda sp. #1</td>
<td>40365</td>
</tr>
<tr>
<td>579</td>
<td>Propeamussium davidsoni</td>
<td>40395</td>
</tr>
<tr>
<td>580</td>
<td>Miscellaneous #6</td>
<td></td>
</tr>
<tr>
<td>581</td>
<td>Caprella mendax</td>
<td>40482</td>
</tr>
<tr>
<td>582</td>
<td>Campylaspis sp. #4</td>
<td>40422</td>
</tr>
<tr>
<td>583</td>
<td>Spirontocaris spp.</td>
<td>40049</td>
</tr>
<tr>
<td>584</td>
<td>Diastylis parapinulosa</td>
<td>40418</td>
</tr>
<tr>
<td>585</td>
<td>Lysianassidae sp. #2</td>
<td>40459</td>
</tr>
<tr>
<td>586</td>
<td>Diastylis pellucida</td>
<td>40417</td>
</tr>
<tr>
<td>587</td>
<td>Eulalia leavicornuta</td>
<td>40304</td>
</tr>
<tr>
<td>588</td>
<td>Stenothoides angusta</td>
<td>40468</td>
</tr>
</tbody>
</table>