A DRP Product Guide

Purpose

This technical note summarizes products investigated and developed by the Dredging Research Program (DRP) that are available to the dredging community. A complete bibliography of DRP publications and other technical transfer products, such as videos and personal computer (PC) programs, is provided. Details are also furnished on how the DRP products and product information and guidance can be obtained.

DRP products are designed to provide assistance to persons involved in all aspects of dredging, including project design and management, planning, engineering, contracting, and equipment design.

Background

Established by the U.S. Army Corps of Engineers in fiscal year 1988 and ending in fiscal year 1994, the DRP was a 7-year program with the objective of developing products through applied research and development to reduce the cost of dredging operations. The DRP addressed a wide and diverse range of dredging problems, resulting in the development of equipment and instrumentation, software, and operational monitoring and management procedures. DRP work units were grouped into five Technical Areas (TAs). The titles and objectives of the five TAs are given in Table 1.

Additional Information

For additional information concerning the contents of this technical note contact the author, Ms. Terri L. Prickett, (601) 634-2337, or the manager of the Dredging Research Program, Mr. E. Clark McNair, (601) 634-2070.
<table>
<thead>
<tr>
<th>Technical Area No.</th>
<th>Title</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analysis of Dredged Material Placed in Open Water</td>
<td>To investigate the short- and long-term fate of dredged material disposed in open water.</td>
</tr>
<tr>
<td>2</td>
<td>Material Properties Related to Navigation and Dredging</td>
<td>To investigate assessment of material properties and characteristics of bottom sediments and rock material to be dredged.</td>
</tr>
<tr>
<td>3</td>
<td>Dredge Plant Equipment and System Processes</td>
<td>To investigate new dredging equipment and systems and provide guidance for improvement of existing dredging equipment.</td>
</tr>
<tr>
<td>4</td>
<td>Vessel Positioning, Survey Controls, and Dredge Monitoring Systems</td>
<td>To evaluate and develop equipment systems that monitor and report hopper dredge activities, an accurate positioning system for dredging and hydrographic surveying, and a real-time system for measuring tide and wave conditions at offshore project sites.</td>
</tr>
<tr>
<td>5</td>
<td>Management of Dredging Projects</td>
<td>To provide tools, procedures, and information to enhance the ability of managers of dredging projects and programs to evaluate existing management options or to assess new ones.</td>
</tr>
</tbody>
</table>

Product Descriptions

The products (tools, techniques, and technological advances) resulting from DRP research are briefly described below, arranged by Technical Area.

Technical Area 1 - Analysis of Dredged Material Disposed in Open Water

The PLUme MEasurement System (PLUMES) is a field data collection system that measures suspended sediment concentration and three-dimensional fluid velocities at dredging or disposal sites. The remote sensing PLUMES consists of a commercially available broadband acoustic doppler current profiler (five-beam) with computer hardware and software for data acquisition and postprocessing. The PLUMES also requires a horizontal positioning system and can be used to monitor shallow- or deep-water disposal operations [POC: Michael W. Tubman].

Acoustic Resuspension Measurement System (ARMS) is a portable underwater instrument/electronics system that includes an ensemble of specialized underwater sensors to accurately measure in situ properties of the bottom-boundary layer (sediment entrainment and erosion/accretion) above dredged material mounds in open-water disposal areas. The ARMS acquires field boundary layer data for dredged material site designation and monitoring [POC: Norman W. Scheffner].
Sea Bed Drifters are low-technology monitoring devices that can be used to map current patterns and provide information on sediment movement from disposal sites [POC: Edward B. Hands].

STFATE is a PC program designed to predict the short-term fate of dredged material from several minutes to a few hours after disposal from a barge or hopper dredge. STFATE calculates suspended sediment concentrations and also computes the bottom footprint of the disposed dredged material mound from a single disposal operation [POC: Billy H. Johnson].

LTFATE is a PC program that computes the long-term stability of a dredged material disposal mound in open water as a function of waves, currents, depths, geometry, and material comprising the mound [POC: Norman W. Scheffner].

MDFATE is a PC program that combines LTFATE and STFATE computations to simulate dynamic building and erosion of mounds resulting from multiple disposal operations. MDFATE addresses questions on site capacity and dispersive characteristics of dredged material disposed in open water [POC: Billy H. Johnson].

COSEDIV is a PC model used to assess the potential for cohesive sediment dispersion from a disposal site where conditions may result in the entrainment of fluid mud. Theoretical developments from COSEDIV have been incorporated into LTFATE to allow for long-term computation of cohesive sediment mounds [POC: Allen M. Teeter].

NMLONG (Numerical Model for Simulating the Longshore Current) is a PC program that calculates the longshore current across a barred profile to aid in estimation of longshore sand transport and evolution of longshore bars [POC: Norman W. Scheffner].

Predictive techniques were refined for evaluating the potential of sands for beach nourishment. This new methodology predicts an equilibrium beach profile resulting from placement of an arbitrary volume of material with an arbitrary grain-size distribution on a profile of arbitrary shape and grain-size distribution [POC: Norman W. Scheffner].

ADCIRC (Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries) is a long-wave hydrodynamic finite element model for long-term computation of tidal constituents and storm surge information over very large computational domains. ADCIRC was developed for use in investigating the long-term dispersive or nondispersive characteristics of existing or proposed open-water disposal sites [POC: Norman W. Scheffner].

A tidal constituent database was generated with ADCIRC that provides simulated time series of tidal elevation and current for any location along the U.S. east and west coasts, Gulf of Mexico, and Caribbean Sea. Generated data can be input into the LTFATE model or any application requiring tidal forcing data [POC: Norman W. Scheffner].
A tropical storm database was generated with ADCIRC that provides simulated surge elevations and currents along the east and Gulf coasts and Puerto Rico [POC: Norman W. Scheffner].

Height, Period, Direction PREprocessor (HPDPRE) and Height, Period, Direction SIMulation (HPDSIM) are PC programs that generate long time sequences of simulated wave data. These data can be input to LTFATE to determine how a dredged material mound behaves over time as well as other applications that require simulated wave information [POC: Norman W. Scheffner].

COhesive sediment eRODibility assessment (CORODE) is a PC program that employs various laboratory data sets to describe sediment erodibility characteristics as well as erosion test shear stress, eroding fluid conditions, and erosion test device configuration [POC: Allen M. Teeter].

HPROFILE is a PC-based numerical model that predicts velocity differences caused by sudden changes in bathymetry such as a dredged material mound or trench. HPROFILE can be used to determine whether material will be eroded or transported from the disposal site [POC: Allen M. Teeter].

Wave-Current-Sediment TRANSport (WCTRANS) is a computer program that predicts bottom sediment transport (bed load and suspended load) in the coastal zone [POC: Norman W. Scheffner].

Empirical BERM (EBERM) PC program estimates the physical stability of berms built with specific size granular materials and exposed to various erosive forces [POC: Edward B. Hands].

Technical Area 2 - Material Properties Related to Navigation and Dredging

A Fluid Mud Survey System estimates required and actual dredging volumes from condition and pre- and post-dredging surveys and augments acoustic depth surveys in navigation channels obstructed by fluid mud accumulation. The system integrates a towed sled that defines bottom sediments in conjunction with a dual-frequency acoustic fathometer. Sled sensors include depth (hydrostatic pressure), material density (nuclear transmission), tilt (inclinometers), and cable tension (strain gages). This system works with conventional hydrographic survey positioning equipment and software [POC: Allen M. Teeter].

An acoustic impedance (AI) method of subbottom profiling was developed to remotely and rapidly determine characteristics of subbottom marine sediments. The AI system includes commercially available high-resolution geophysical profiling systems operating at frequencies below 12 kHz along with post-processing software and is incorporated with digital terrain modeling techniques to provide computations of volume and material type to be removed by dredging [POC: Robert F. Ballard].
GEOtechnical factors in DREDGing (GEODREDG) is a knowledge-based expert system consisting of three PC WINDOWS-driven programs [POC: W. Milton Myers].

a. GEOSITE (GEOtechnical SITE investigation methods) offers guidance for the selection of subsurface investigation equipment and methods for sediments assumed to be present.

b. GEOCLASS (GEOtechnical soil CLASSification) provides guidance to identify, describe, and classify soil samples.

c. DREDGABL provides guidance in determining the dredgeability of sediments at a site in terms of the geotechnical descriptors of the sediments.

The Drilling Parameter Recorder, a commercially available equipment system, is capable of monitoring and recording parameters associated with drill rig response as cores are taken in a rock mass. Associated software analyzes and interprets the parameters to determine the specific energy of drilling and in situ unconfined compressive strength [POC: Hardy J. Smith].

The Point Load Test (PLT) was adapted for quick onsite determination of the unconfined compressive strength of rock material to be dredged using easily portable equipment. The PLUCS (Point Load Index and Unconfined Compressive Strength) database system is companion software to the PLT and stores, retrieves, and compares rock test data [POC: Hardy J. Smith].

Technical Area 3 - Dredge Plant Equipment and System Processes

Recommendations for trailing suction draghead design modifications to increase productivity were developed through laboratory and field testing. Also, a diamond-shaped draghead design was developed for protection of sea turtles from hopper dredging activities [POC: Glynn E. Banks].

Hydraulic design guidance for fluidizers was developed to augment sand-bypassing activities for use in stabilizing and maintaining a navigable channel [POC: James E. Clausner].

An improved sand-bypassing eductor system was designed to reduce problems with deployment and retrieval and clogging with debris and was tested for performance along with other commercially available eductors. Commercial submersible pumps were also tested for performance [POC: James E. Clausner].

A portable single-point mooring buoy for hopper dredge direct pumpout was designed so that dredged material could be placed in previously inaccessible areas and increase the beneficial uses of dredged material [POC: James E. Clausner].
A hopper production monitoring system was developed to monitor solids density and payload. Two instrumentation systems (described below) are included [POC: Stephen H. Scott].

a. Acoustic sensors and pressure transducers to measure the level of dredged material in the hopper.

b. Electrical resistivity probes to measure vertical solids density in a dredge hopper.

The Automated Load Monitoring System (ALMS) is a PC program that automates the hopper production monitoring system [POC: Stephen H. Scott].

Technical Area 4 - Vessel Positioning, Survey Controls, and Dredge Monitoring Systems

The Automated Real-Time Tidal Elevation System (ARTTES) provides real-time vertical water-level control for offshore survey and dredging operations requiring tidal data [POC: Andrew W. Garcia].

The Vertical Motion System (VMS-II) is a second-generation frequency domain-based inertial system that uses commercially available sensors and eliminates phase lag to provide real-time estimates of vertical motion for hydrographic survey applications [POC: Andrew W. Garcia].

An On-The-Fly Differential Global Positioning System (OTF-DGPS) is a carrier phase-based positioning system using commercially available equipment. The OTF-DGPS provides real-time three-dimensional positions with horizontal and vertical accuracies better than 1 dm (4 in.) and makes real-time tide corrections for hydrographic survey and dredging applications [POC: Steve DeLoach].

The Silent Inspector (SI) system automatically logs data from instruments generally maintained aboard hopper dredges. The SI provides summaries of these data in both report and graphical form to better assess contractor performance and adherence to contract terms [POC: James R. Rosati].

Guidance on dredge production meter systems (an instrumentation plan) was developed from equipment evaluations for performance and accuracy and from a comparative survey. Proper planning and use of dredge production meters can increase production and improve overall efficiency in hopper and pipeline dredges during dredging operations [POC: Stephen H. Scott].

PC-based data-acquisition systems (DAS) were developed for dredge production meter data collection, real-time processing, and data display. The DAS are designed to operate unattended and continuously [POC: Stephen H. Scott].
A Dragarm Monitoring System (DAMS) monitors hopper dredge dragarms and provides visual display of the dragarm position and ship draft and list [POC: Stephen H. Scott].

The Small Boat Hydrographic System (SBS) is a commercially available package consisting of several multitasking computer programs designed to support hydrographic surveying activities. Modules have been added to the SBS to add position and depth information to tie into the fluid mud survey system described under TA 2 [POC: Stephen H. Scott].

Technical Area 5 - Management of Dredging Projects

General guidance in capping technologies was developed for designing, executing, and monitoring capped features in open-water disposal sites [POC: Michael R. Palermo].

Design guidance for nearshore berm creation and behavior was developed to evaluate berms as disposal options and to develop site-specific berm configurations [POC: Cheryl B. Pollock].

Fluidizing or water injection dredging systems were evaluated as a low-cost alternative to traditional dredging for appropriate locations [POC: James E. Clausner].

Guidance on open-water disposal site management provides information for developing and implementing effective monitoring and management plans for those sites [POC: James E. Clausner].

The 1953 Engineer Manual (EM) 1125-2-312, *Manual of Instructions for Hopper Dredge Operations and Standard Reporting Procedures*, was modernized to reflect changes in policies, definition of terms, and reporting forms. This updated EM also includes information for sidecasting dredges [POC: James E. Clausner].

A benefits analysis was conducted that determined the known and potential cost savings resulting from use of DRP products within each District [POC: James E. Clausner].

DRP Products for Information Transfer

The DRP uses a wide range of products to convey research results to the Corps dredging community. Standard publication products include documentary reports (Instruction, Technical, and Contract reports), Miscellaneous Papers, and Technical Notes. Video reports are also available that highlight specific DRP
projects and accomplishments. Numerous PC programs were developed for use of DRP technology in specific situations (for example, prediction and assessment). The variety of DRP products is described in *Dredging Research Technical Notes* DRP-6-01 (Tillman 1993).

DRP Assistance

DRP technology transfer activities to the Corps dredging community are continuing under the Dredging Operations Technical Support (DOTS) Program. The DOTS Program is funded through the Environmental Effects of Dredging Programs (EEDP) at the Waterways Experiment Station (WES) by Headquarters, U.S. Army Corps of Engineers (HQUSACE), Dredging and Navigation Branch (CECW-OD), and is designed to facilitate the dissemination of dredging and dredged material disposal research technology to the field. Activities of the DOTS Program now include DRP products technical assistance, user workshops, technical notes, and information exchange bulletins. Requests for DOTS assistance may be sent to: U.S. Army Engineer Waterways Experiment Station, ATTN: Mr. Thomas R. Patin, DOTS Program Manager, CEWES-EE-A, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, telephone (601) 634-3444 or e-mail patint@ex1.wes.army.mil.

How to Obtain DRP Information

DRP Contacts

The Program Manager, Technical Area Managers, and Principal Investigators were key personnel in the DRP team and now serve as points of contact for information pertaining to DRP technology. The roles of DRP personnel are discussed in *Dredging Research Technical Notes* DRP-6-01 (Tillman 1993). Table 2 provides the names of all current DRP contacts for information on DRP products.

Publications

Publications of WES and other Corps offices are distributed primarily to Department of Defense agencies and certain other agencies having an interest in the work reported. Copies of reports remaining after the initial distribution are available without charge to Federal Government agencies and the general public on request until the supply of the particular item is exhausted. Requests for DRP reports, Miscellaneous Papers, Video Reports, and Technical Notes may be sent to: U.S. Army Engineer Waterways Experiment Station, ATTN: Reports Distribution Office (CEWES-IM-R), 3909 Halls Ferry Road, Vicksburg, MS 39180-6199; telephone (601) 634-2571 or (601) 634-2696.

Reports not available through WES can be purchased from the National Technical Information Service (NTIS), U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; telephone, (703) 487-4650. Costs of hard copies or microfiche of these reports are available from NTIS on request. Most
DRP reports (Instruction, Technical, and Contract) and Miscellaneous Papers listed in the following bibliography are accompanied by AD numbers required by NTIS for ordering.

For Internet users, access to DRP publications is available via the WES home page (http://bigfoot.cerc.wes.army.mil/c180.html).

Table 2
Key Personnel
Dredging Research Program

<table>
<thead>
<tr>
<th></th>
<th>Office</th>
<th>Office Symbol</th>
<th>Telephone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Clark McNair</td>
<td>Program Manager, Coastal</td>
<td>CEWES-CP-D</td>
<td>(601) 634-2070</td>
</tr>
<tr>
<td></td>
<td>Engineering Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyndell Z. Hales</td>
<td>Assistant Manager, Coastal</td>
<td>CEWES-CP-D</td>
<td>(601) 634-3207</td>
</tr>
<tr>
<td></td>
<td>Engineering Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karen R. Wood</td>
<td>Coastal Engineering Research</td>
<td>CEWES-CP-D</td>
<td>(601) 634-4271</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Managers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billy H. Johnson (Area 1)</td>
<td>Hydraulics Laboratory</td>
<td>CEWES-HR-M</td>
<td>(601) 634-3425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don C. Banks (Area 2)</td>
<td>Geotechnical Laboratory</td>
<td>CEWES-GS</td>
<td>(601) 634-2630</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>William D. Martin (Area 3)</td>
<td>Hydraulics Laboratory</td>
<td>CEWES-HE-E</td>
<td>(601) 634-4157</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George P. Bonner (Area 4)</td>
<td>Instrumentation Services</td>
<td>CEWES-JV-Z</td>
<td>(601) 634-2538</td>
</tr>
<tr>
<td></td>
<td>Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas W. Richardson (Area 5)</td>
<td>Coastal Engineering Research Center</td>
<td>CEWES-CD</td>
<td>(601) 634-2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Investigators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norman W. Scheffner CEWES-CR-P</td>
<td>Calculation of Boundary Layer Properties (Noncohesive Sediments)</td>
<td>1</td>
<td>(601) 634-3220</td>
</tr>
<tr>
<td></td>
<td>Numerical Simulation Techniques for Evaluating Long-Term Stability of Dredged Material Disposed in Open Waters</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Michael W. Tubman CEWES-CD-P</td>
<td>Measurement of Entrainment and Transport (Noncohesive Sediments)</td>
<td>1</td>
<td>(601) 634-3009</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Principal Investigators (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRP Work Unit</td>
</tr>
<tr>
<td>Allen M. Teeter CEWES-HE-P</td>
</tr>
<tr>
<td>Billy H. Johnson CEWES-HR-M</td>
</tr>
<tr>
<td>Edward B. Hands CEWES-CD-SE</td>
</tr>
<tr>
<td>Robert F. Ballard CEWES-GG</td>
</tr>
<tr>
<td>W. Milton Myers CEWES-GS-S</td>
</tr>
<tr>
<td>Hardy J. Smith CEWES-GS-R</td>
</tr>
<tr>
<td>Allen M. Teeter CEWES-HE-P</td>
</tr>
<tr>
<td>Glynn E. Banks CEWES-HE-E</td>
</tr>
<tr>
<td>James E. Clausner CEWES-CD-SE</td>
</tr>
<tr>
<td>Stephen H. Scott CEWES-HE-E</td>
</tr>
<tr>
<td>Andrew W. Garcia CEWES-CD-P</td>
</tr>
<tr>
<td>Steve DeLoach CETEC-TL-SP</td>
</tr>
<tr>
<td>Principal Investigators (Continued)</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>DRP Work Unit</td>
</tr>
<tr>
<td>James R. Rosati</td>
</tr>
<tr>
<td>Gary C. Lynch</td>
</tr>
<tr>
<td>James E. Clausner</td>
</tr>
<tr>
<td>Michael R. Palermo</td>
</tr>
<tr>
<td>Cheryl B. Pollock</td>
</tr>
<tr>
<td>Terri L. Prickett</td>
</tr>
</tbody>
</table>
Dredging Research Program Bibliography

Instruction Reports

IR DRP-94-1, "DREDGABL: Geotechnical Factors in Dredgeability," S. Joseph Spigolon, October 1994 [AD Number A286724].

Technical Reports

TR DRP-90-2, "Results of Monitoring the Disposal Berm at Sand Island, AL; Report 1, Construction and First Year's Response," Edward B. Hands, December 1990 [AD Number A231838].

Stephen H. Scott, Walter Pankow, and Thad C. Pratt, August 1992 [AD Number A257270].

TR DRP-93-1, “Development and Verification of Numerical Models for Predicting the Initial Fate of Dredged Material Disposed in Open Water; Report 1, Physical Model Tests of Dredged Material Disposed from a Split-hull
TR DRP-93-1, "Development and Verification of Numerical Models for Predicting the Initial Fate of Dredged Material Disposed in Open Water; Report 2, Theoretical Developments and Verification Results," Billy H. Johnson and Moira T. Fong, February 1995 [AD Number A292040].

TR DRP-94-2, "Water Jets as a Draghead Enhancement Device; Hydraulic Model Investigation," Noble J. Brogden, Glynn E. Banks, and John A. Ashley, June 1994 [AD Number A282884].

TR DRP-94-5, "Improving Site Characterization for Rock Dredging Using a Drilling Parameter Recorder and the Point Load Test," Hardy J. Smith, September 1994 [AD Number A286725].

TR DRP-94-6, "Improved Eductors for Sand Bypassing," Gregory L. Williams, James E. Clausner, and Peter J. Neilans, November 1994 [AD Number A290665].

TR DRP-95-6, "Impact of Near-Bottom Currents on Dredged Material Mounds near Mobile Bay," Scott Douglass, Donald T. Resio, and Edward B. Hands, July 1995 [AD Number A299432].

Contract Reports

CR DRP-93-2, "Rational Techniques for Evaluating the Potential of Sands for Beach Nourishment," Robert G. Dean and Jorge Abramian, August 1993 [AD Number A270735].

CR DRP-93-3, "Geotechnical Factors in the Dredgeability of Sediments; Report 1, Geotechnical Descriptors for Sediments to Be Dredged," S. Joseph Spigolon, November 1993 [AD Number A274782].

CR DRP-94-1; "Hydraulically Transported Clay Balls," Stephen D. Richter and Dov Leshchinsky, April 1994 [AD Number A289096].

CR DRP-95-1, "GEOSITE, Geotechnical Site Investigation Methods," S. Joseph Spigolon and Reda M. Bakeer, October 1995 [AD Number A286859].

Miscellaneous Papers

(Unnumbered), "DRP Product Inventory," Russell K. Tillman, January 1991 [AD Number A268742].

Technical Notes

Technical Area 1: Analysis of Dredged Material Placed in Open Waters

Technical Area 2: Material Properties Related to Navigation and Dredging

Technical Area 3: Dredge Plant Equipment and System Processes

Technical Area 4: Vessel Positioning, Survey Controls, and Dredge Monitoring Systems

Technical Area 5: Management of Dredging Projects

Miscellaneous

Video Reports

PC Programs

"Short-Term FATE of Dredged Material (STFATE)," Billy H. Johnson, June 1990.

"Height, Period, Direction PREprocessor (HPDPRE) & Height, Period, Direction SIMulation (HPDSIM)," Norman W. Scheffner, September 1990.

"Cohesive Sediments PC Programs (HPROF, COSEDIH)," Allen Teeter, October 1990.

"Numerical Model of the LONGshore Current (NMLONG)," Nicholas Kraus, March 1991.

"Point Load Index and Unconfinned Compressive Strength Database System (PLUCS)," Hardy Smith, October 1991.

